Skip to main content

Circulating Tumor Cells as Predictive Marker in Metastatic Disease

  • Chapter
  • First Online:

Abstract

Numerous studies have demonstrated that circulating tumor cell (CTC) number in peripheral blood correlates with therapy efficiency in various tumors, and can serve as a prognostic marker of metastasis development. Recent clinical data support many oncologists’ opinion that some medical procedures may provoke metastasis by triggering increased tumor cell shedding into circulation, but no systematic study has been performed. The development of an in vivo flow cytometry method for real-time CTC quantification can provide insights on CTC release dynamics during different medical interventions and possibly long and short term outcome predictions.

Noninvasive enumeration of CTCs is the most direct way to confirm the central hypothesis that tumor manipulations during medical interventions can promote liberation of CTC into the bloodstream. Incisional biopsy and complete tumor resection in melanoma-bearing mice were conducted and the CTC rate was monitored before, during, and for a short-term after the procedures. Incisional biopsy significantly increased CTC counts (up to 60-fold), whereas complete tumor resection significantly decreased CTC counts. Long-term in vivo monitoring of CTC triggered by punch biopsy and complete tumor resection was performed on breast cancer- bearing mice. After punch biopsy, the number of CTC increased. In contrast, complete tumor resection significantly decreased the CTC count. New techniques were proposed for labeling newly released CTCs in order to identify them among previously circulating cells.

These findings have broad clinical implications to reduce viable CTCs release during diagnostics and treatments by real-time monitoring of CTC dynamics followed by well-timed treatment to reduce CTCs in the blood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Galanzha EI, Zharov VP (2013) Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo. Cancers (Basel) 5:1691–1738

    Article  Google Scholar 

  2. Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8:329–340

    Article  CAS  PubMed  Google Scholar 

  3. Kaiser J (2010) Medicine. Cancer’s circulation problem. Science 327:1072–1074

    Article  CAS  PubMed  Google Scholar 

  4. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weitz J, Kienle P, Lacroix J, Willeke F, Benner A et al (1998) Dissemination of tumor cells in patients undergoing surgery for colorectal cancer. Clin Cancer Res 4:343–348

    CAS  PubMed  Google Scholar 

  7. Louha M, Nicolet J, Zylberberg H, Sabile A, Vons C et al (1999) Liver resection and needle liver biopsy cause hematogenous dissemination of liver cells. Hepatology 29:879–882

    Article  CAS  PubMed  Google Scholar 

  8. Loughran CF, Keeling CR (2011) Seeding of tumour cells following breast biopsy: a literature review. Br J Radiol 84:869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katharina P (2011) Tumor cell seeding during surgery-possible contribution to metastasis formations. Cancers (Basel) 3:2540–2553

    Article  Google Scholar 

  10. Patel H, Le Marer N, Wharton RQ, Khan ZA, Araia R et al (2002) Clearance of circulating tumor cells after excision of primary colorectal cancer. Ann Surg 235:226–231

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fan ZC, Yan J, Liu GD, Tan XY, Weng XF et al (2012) Real-time monitoring of rare circulating hepatocellular carcinoma cells in an orthotopic model by in vivo flow cytometry assesses resection on metastasis. Cancer Res 72:2683–2691

    Article  CAS  PubMed  Google Scholar 

  12. Wind J, Tuynman JB, Tibbe AG, Swennenhuis JF, Richel DJ et al (2009) Circulating tumour cells during laparoscopic and open surgery for primary colonic cancer in portal and peripheral blood. Eur J Surg Oncol 35:942–950

    Article  CAS  PubMed  Google Scholar 

  13. He W, Wang H, Hartmann LC, Cheng JX, Low PS (2007) In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc Natl Acad Sci U S A 104:11760–11765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C et al (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res 13:920–928

    Article  CAS  PubMed  Google Scholar 

  15. Bednarz-Knoll N, Alix-Panabieres C, Pantel K (2011) Clinical relevance and biology of circulating tumor cells. Breast Cancer Res 13:228

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wei X, Sipkins DA, Pitsillides CM, Novak J, Georgakoudi I et al (2005) Real-time detection of circulating apoptotic cells by in vivo flow cytometry. Mol Imaging 4:415–416

    PubMed  PubMed Central  Google Scholar 

  17. Kusukawa J, Suefuji Y, Ryu F, Noguchi R, Iwamoto O et al (2000) Dissemination of cancer cells into circulation occurs by incisional biopsy of oral squamous cell carcinoma. J Oral Pathol Med 29:303–307

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi K, Jiang P, Yamauchi K, Yamamoto N, Tsuchiya H et al (2007) Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Res 67:8223–8228

    Article  CAS  PubMed  Google Scholar 

  19. Novak J, Georgakoudi I, Wei X, Prossin A, Lin CP (2004) In vivo flow cytometer for real- time detection and quantification of circulating cells. Opt Lett 29:77–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Georgakoudi I, Solban N, Novak J, Rice WL, Wei X et al (2004) In vivo flow cytometry: a new method for enumerating circulating cancer cells. Cancer Res 64:5044–5047

    Article  CAS  PubMed  Google Scholar 

  21. Nedosekin DA, Sarimollaoglu M, Galanzha EI, Sawant R, Torchilin VP et al (2013) Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts. J Biophotonics 6:425–434

    Article  CAS  PubMed  Google Scholar 

  22. Juratli MA, Sarimollaoglu M, Siegel ER, Nedosekin DA, Galanzha EI et al (2014) Real-time monitoring of circulating tumor cell release during tumor manipulation using in vivo photoacoustic and fluorescent flow cytometry. Head Neck 36:1207–1215

    Article  PubMed  Google Scholar 

  23. Juratli MA, Siegel ER, Nedosekin DA, Sarimollaoglu M, Jamshidi-Parsian A et al (2015) In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions. PLoS One 10:e0137613

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zharov VP, Galanzha EI, Tuchin VV (2005) Integrated photothermal flow cytometry in vivo. J Biomed Opt 10:051502

    Article  PubMed  Google Scholar 

  25. Juratli MA, Sarimollaoglu M, Nedosekin DA, Melerzanov AV, Zharov VP et al (2014) Dynamic fluctuation of circulating tumor cells during cancer progression. Cancers (Basel) 6:128–142

    Article  Google Scholar 

  26. Menyaev YA, Nedosekin DA, Sarimollaoglu M, Juratli MA, Galanzha EI et al (2013) Optical clearing in photoacoustic flow cytometry. Biomed Opt Express 4:3030–3041

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sarimollaoglu M, Nedosekin DA, Menyaev YA, Juratli MA, Zharov VP (2014) Nonlinear photoacoustic signal amplification from single targets in absorption background. Photoacoustics 2:1–11

    Article  PubMed  Google Scholar 

  28. Nedosekin DA, Juratli MA, Sarimollaoglu M, Moore CL, Rusch NJ et al (2013) Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo. J Biophotonics 6:523–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Galanzha EI, Kim JW, Zharov VP (2009) Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells. J Biophotonics 2:725–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP (2009) In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two- color photoacoustic flow cytometry with a diode laser. Cancer Res 69:7926–7934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Galanzha EI, Zharov VP (2012) Photoacoustic flow cytometry. Methods 57:280–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galanzha EI, Nedosekin DA, Sarimollaoglu M, Orza AI, Biris AS et al (2015) Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances. J Biophotonics 8:81–93

    Article  CAS  PubMed  Google Scholar 

  33. Yao J, Kaberniuk AA, Li L, Shcherbakova DM, Zhang R et al (2016) Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat Methods 13:67–73

    CAS  PubMed  Google Scholar 

  34. Nedosekin DA, Verkhusha VV, Melerzanov AV, Zharov VP, Galanzha EI (2014) In vivo photoswitchable flow cytometry for direct tracking of single circulating tumor cells. Chem Biol 21:792–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kedrin D, Gligorijevic B, Wyckoff J, Verkhusha VV, Condeelis J et al (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5:1019–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pantel K, Alix-Panabieres C (2012) Detection methods of circulating tumor cells. J Thorac Dis 4:446–447

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Plaks V, Koopman CD, Werb Z (2013) Cancer. Circulating tumor cells. Science 341: 1186–1188.

    Google Scholar 

  38. Richmond A, Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 1:78–82

    Article  PubMed  PubMed Central  Google Scholar 

  39. Davies MM, Mathur P, Carnochan P, Saini S, Allen-Mersh TG (2002) Effect of manipulation of primary tumour vascularity on metastasis in an adenocarcinoma model. Br J Cancer 86:123–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen A. Juratli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Juratli, M.A., Nedosekin, D.A., Sarimollaoglu, M., Siegel, E.R., Galanzha, E.I., Zharov, V.P. (2017). Circulating Tumor Cells as Predictive Marker in Metastatic Disease. In: Retsky, M., Demicheli, R. (eds) Perioperative Inflammation as Triggering Origin of Metastasis Development. Springer, Cham. https://doi.org/10.1007/978-3-319-57943-6_5

Download citation

Publish with us

Policies and ethics