Skip to main content

Peri-operative Shift in Angiogenesis-Related Factors in Breast Cancer Patients

  • Chapter
  • First Online:
Perioperative Inflammation as Triggering Origin of Metastasis Development

Abstract

Surgery still remains the cornerstone of breast cancer treatment but in some cases it has been implicated for stimulating early locoregional recurrence or even distant metastatic spread. There is evidence that angiogenesis, initiated by the surgical wounding itself during the process of healing, could offer valuable answers in such matters as well as enable a more profound understanding of the mechanisms of carcinogenesis in general. In our study, we investigated the impact of breast surgery on circulating angiogenesis-related factors in the peripheral blood. We used plasma samples from ten female patients with biopsy-proven breast cancer (Ca group) and six other females with fibroadenoma (Control group) before surgery (PRO) and post-operatively on days 3 (D3) and 7 (D7, only for breast cancer patients). These samples were analyzed for circulating levels of vascular endothelial growth factor A (VEGF-A), Interleukin-8 (IL-8) and fibroblast growth factor 2 (FGF2/bFGF) using ELISA. Moreover, 84 angiogenesis-associated mRNA transcripts were also assessed using quantitative RT-PCR arrays at the same time points. We were able to find a different angiogenic profile between breast cancer patients and those with benign breast disease (fibroadenoma). The effect of surgery on the mechanism of new blood vessel formation was found to be more robust and far more prolonged in women suffering from malignancy of the breast, than those operated for fibroadenoma. Mastectomy provoked a transient increase in VEGF-A plasma levels and altered the expression of many angiogenesis-related circulating gene transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamis AP, Miller JW, Bernal MT et al (1994) Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 118:445–450

    Article  CAS  PubMed  Google Scholar 

  2. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  3. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  4. Folkman J (2003) Angiogenesis in arthritis. In: Smolen JS, Lipsky PE (eds) Targeted therapies in rheumatology. Martin Dunitz, London, pp 111–131

    Google Scholar 

  5. van der Bilt JD, Borel Rinkes IH (2004) Surgery and angiogenesis. Biochim Biophys Acta 1654:95–104

    PubMed  Google Scholar 

  6. Hofer SO, Molema G, Hermens RA et al (1999) The effect of surgical wounding on tumour development. Eur J Surg Oncol 25:231–243

    Article  CAS  PubMed  Google Scholar 

  7. Schaper W, Schaper J (eds) (1993) Collateral circulation; heart, brain, kidney, limbs. Kluwer Academic, Boston

    Google Scholar 

  8. Kraft A, Weindel K, Ochs A et al (1999) Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer 85:178–187

    Article  CAS  PubMed  Google Scholar 

  9. Cao Y (2013) Erythropoietin in cancer: a dilemma in risk therapy. Trends Endocrinol Metab 24:190–199

    Article  CAS  PubMed  Google Scholar 

  10. Acs G, Acs P, Beckwith SM et al (2001) Erythropoietin and erythropoietin receptor expression in human cancer. Cancer Res 61:3561–3565

    CAS  PubMed  Google Scholar 

  11. Murukesh N, Dive C, Jayson GC (2010) Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br J Cancer 102:8–18

    Article  CAS  PubMed  Google Scholar 

  12. Italiano JE Jr, Richardson JL, Patel-Hett S et al (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111:1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klement GL, Yip TT, Cassiola F et al (2009) Platelets actively sequester angiogenesis regulators. Blood 113:2835–2842

    Article  CAS  PubMed  Google Scholar 

  14. Salven P, Orpana A, Joensuu H (1999) Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin Cancer Res 5:487–491

    CAS  PubMed  Google Scholar 

  15. George ML, Eccles SA, Tutton MG et al (2000) Correlation of plasma and serum vascular endothelial growth factor levels with platelet count in colorectal cancer: clinical evidence of platelet scavenging? Clin Cancer Res 6:3147–3152

    CAS  PubMed  Google Scholar 

  16. McIlhenny C, George WD, Doughty JC (2002) A comparison of serum and plasma levels of vascular endothelial growth factor during the menstrual cycle in healthy female volunteers. Br J Cancer 86:1786–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salgado R, Benoy I, Bogers J et al (2001) Platelets and vascular endothelial growth factor (VEGF): a morphological and functional study. Angiogenesis 4:37–43

    Article  CAS  PubMed  Google Scholar 

  18. Arisato T, Hashiguchi T, Sarker KP et al (2003) Highly accumulated platelet vascular endothelial growth factor in coagulant thrombotic region. J Thromb Haemost 1:2589–2593

    Article  CAS  PubMed  Google Scholar 

  19. Jelkmann W (2001) Pitfalls in the measurement of circulating vascular endothelial growth factor. Clin Chem 47:617–623

    CAS  PubMed  Google Scholar 

  20. Thomeas V, Chow S, Gutierrez JO et al (2014) Technical considerations in the development of circulating peptides as pharmacodynamic biomarkers for angiogenesis inhibitors. J Clin Pharmacol 54:682–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Georgiou GK, Igglezou M, Sainis I et al (2013) Impact of breast cancer surgery on angiogenesis circulating biomarkers: a prospective longitudinal study. World J Surg Oncol 11:213

    Article  PubMed  PubMed Central  Google Scholar 

  22. Senger DR, Galli SJ, Dvorak AM et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    Article  CAS  PubMed  Google Scholar 

  23. Byrne AM, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9:777–794

    Article  CAS  PubMed  Google Scholar 

  24. Holmes DI, Zachary I (2005) The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 6:209

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pande D, Negi R, Khanna S et al (2011) Vascular endothelial growth factor levels in relation to oxidative damage and antioxidant status in patients with breast cancer. J Breast Cancer 14:181–184

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  27. Yamazaki Y, Morita T (2006) Molecular and functional diversity of vascular endothelial growth factors. Mol Divers 10:515–527

    Article  CAS  PubMed  Google Scholar 

  28. Kut C, Mac Gabhann F, Popel AS (2007) Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer 97:978–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dvorak HF (2005) Angiogenesis: update 2005. J Thromb Haemost 3:1835–1842

    Article  CAS  PubMed  Google Scholar 

  30. Bando H, Weich HA, Brokelmann M et al (2005) Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br J Cancer 92:553–561

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Makinen T, Veikkola T, Mustjoki S et al (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20:4762–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cao R, Eriksson A, Kubo H et al (2004) Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94:664–670

    Article  CAS  PubMed  Google Scholar 

  33. Thielemann A, Baszczuk A, Kopczynski Z et al (2013) Clinical usefulness of assessing VEGF and soluble receptors sVEGFR-1 and sVEGFR-2 in women with breast cancer. Ann Agric Environ Med 20:293–297

    Google Scholar 

  34. Gasparini G (2000) Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist 5(Suppl 1):37–44

    Article  CAS  PubMed  Google Scholar 

  35. Nishimura R, Nagao K, Miyayama H et al (2003) Higher plasma vascular endothelial growth factor levels correlate with menopause, overexpression of p53, and recurrence of breast cancer. Breast Cancer 10:120–128

    Article  PubMed  Google Scholar 

  36. Zhao J, Yan F, Ju H et al (2004) Correlation between serum vascular endothelial growth factor and endostatin levels in patients with breast cancer. Cancer Lett 204:87–95

    Article  CAS  PubMed  Google Scholar 

  37. Gasparini G, Toi M, Gion M et al (1997) Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 89:139–147

    Article  CAS  PubMed  Google Scholar 

  38. Gasparini G, Harris AL (1995) Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J Clin Oncol 13:765–782

    Article  CAS  PubMed  Google Scholar 

  39. Nicolini A, Campani D, Miccoli P et al (2004) Vascular endothelial growth factor (VEGF) and other common tissue prognostic indicators in breast cancer: a case-control study. Int J Biol Markers 19:275–281

    Article  CAS  PubMed  Google Scholar 

  40. Moran MS, Yang Q, Goyal S et al (2011) Evaluation of vascular endothelial growth factor as a prognostic marker for local relapse in early-stage breast cancer patients treated with breast-conserving therapy. Int J Radiat Oncol Biol Phys 81:1236–1243

    Article  CAS  PubMed  Google Scholar 

  41. Balsari A, Maier JA, Colnaghi MI, Menard S (1999) Correlation between tumor vascularity, vascular endothelial growth factor production by tumor cells, serum vascular endothelial growth factor levels, and serum angiogenic activity in patients with breast carcinoma. Lab Investig 79:897–902

    CAS  PubMed  Google Scholar 

  42. Garvin S, Dabrosin C (2008) In vivo measurement of tumor estradiol and vascular endothelial growth factor in breast cancer patients. BMC Cancer 8:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Caine GJ, Lip G, Zanetto U et al (2007) A comparison of plasma versus histologic indices of angiogenic markers in breast cancer. Appl Immunohistochem Mol Morphol 15:382–388

    Article  CAS  PubMed  Google Scholar 

  44. Karayiannakis AJ, Zbar A, Polychronidis A, Simopoulos C (2003) Serum and drainage fluid vascular endothelial growth factor levels in early surgical wounds. Eur Surg Res 35:492–496

    Article  CAS  PubMed  Google Scholar 

  45. Wu FP, Hoekman K, Meijer S, Cuesta MA (2003) VEGF and endostatin levels in wound fluid and plasma after breast surgery. Angiogenesis 6:255–257

    Article  CAS  PubMed  Google Scholar 

  46. www.rndsystems.com/products/human-vegf-quantikine-elisa-kit_dve00. In Edition

  47. Adams J, Carder PJ, Downey S et al (2000) Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res 60:2898–2905

    CAS  PubMed  Google Scholar 

  48. Benoy I, Salgado R, Colpaert C et al (2002) Serum interleukin 6, plasma VEGF, serum VEGF, and VEGF platelet load in breast cancer patients. Clin Breast Cancer 2:311–315

    Article  CAS  PubMed  Google Scholar 

  49. Rykala J, Przybylowska K, Majsterek I et al (2011) Angiogenesis markers quantification in breast cancer and their correlation with clinicopathological prognostic variables. Pathol Oncol Res 17:809–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Konukoglu D, Turhan MS, Celik V, Turna H (2007) Relation of serum vascular endothelial growth factor as an angiogenesis biomarker with nitric oxide & urokinase-type plasminogen activator in breast cancer patients. Indian J Med Res 125:747–751

    CAS  PubMed  Google Scholar 

  51. Yamamoto Y, Toi M, Kondo S et al (1996) Concentrations of vascular endothelial growth factor in the sera of normal controls and cancer patients. Clin Cancer Res 2:821–826

    CAS  PubMed  Google Scholar 

  52. Caine GJ, Blann AD, Stonelake PS et al (2003) Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1. Eur J Clin Investig 33:883–890

    Google Scholar 

  53. Bondestam J, Salven P, Jaaskela-Saari H et al (2000) Major surgery increases serum levels of vascular endothelial growth factor only temporarily. Am J Surg 179:57–59

    Article  CAS  PubMed  Google Scholar 

  54. Curigliano G, Petit JY, Bertolini F et al (2005) Systemic effects of surgery: quantitative analysis of circulating basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and transforming growth factor beta (TGF-beta) in patients with breast cancer who underwent limited or extended surgery. Breast Cancer Res Treat 93:35–40

    Article  CAS  PubMed  Google Scholar 

  55. Belizon A, Balik E, Feingold DL et al (2006) Major abdominal surgery increases plasma levels of vascular endothelial growth factor: open more so than minimally invasive methods. Ann Surg 244:792–798

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hormbrey E, Han C, Roberts A et al (2003) The relationship of human wound vascular endothelial growth factor (VEGF) after breast cancer surgery to circulating VEGF and angiogenesis. Clin Cancer Res 9:4332–4339

    CAS  PubMed  Google Scholar 

  57. Caine GJ, Stonelake PS, Lip GY, Blann AD (2007) Changes in plasma vascular endothelial growth factor, angiopoietins, and their receptors following surgery for breast cancer. Cancer Lett 248:131–136

    Article  CAS  PubMed  Google Scholar 

  58. Baum M, Demicheli R, Hrushesky W, Retsky M (2005) Does surgery unfavourably perturb the “natural history” of early breast cancer by accelerating the appearance of distant metastases? Eur J Cancer 41:508–515

    Article  PubMed  Google Scholar 

  59. Retsky MW, Demicheli R, Hrushesky WJ et al (2008) Dormancy and surgery-driven escape from dormancy help explain some clinical features of breast cancer. APMIS 116:730–741

    Article  CAS  PubMed  Google Scholar 

  60. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qazi BS, Tang K, Qazi A (2011) Recent advances in underlying pathologies provide insight into interleukin-8 expression-mediated inflammation and angiogenesis. Int J Inflam 2011:908468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    Article  CAS  PubMed  Google Scholar 

  63. Holmes WE, Lee J, Kuang WJ et al (1991) Structure and functional expression of a human interleukin-8 receptor. Science 253:1278–1280

    Article  CAS  PubMed  Google Scholar 

  64. Murphy PM, Tiffany HL (1991) Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253:1280–1283

    Article  CAS  PubMed  Google Scholar 

  65. Donnelly SC, Strieter RM, Kunkel SL et al (1993) Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341:643–647

    Article  CAS  PubMed  Google Scholar 

  66. Nakamura H, Yoshimura K, McElvaney NG, Crystal RG (1992) Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line. J Clin Invest 89:1478–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mattoli S, Marini M, Fasoli A (1992) Expression of the potent inflammatory cytokines, GM-CSF, IL6, and IL8, in bronchial epithelial cells of asthmatic patients. Chest 101:27S–29S

    Article  CAS  PubMed  Google Scholar 

  68. Benoy IH, Salgado R, Van Dam P et al (2004) Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 10:7157–7162

    Google Scholar 

  69. Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12:375–391

    Article  CAS  PubMed  Google Scholar 

  70. Haraguchi M, Komuta K, Akashi A et al (2002) Elevated IL-8 levels in the drainage vein of resectable Dukes’ C colorectal cancer indicate high risk for developing hepatic metastasis. Oncol Rep 9:159–165

    PubMed  Google Scholar 

  71. Yuan A, Yu CJ, Luh KT et al (2002) Aberrant p53 expression correlates with expression of vascular endothelial growth factor mRNA and interleukin-8 mRNA and neoangiogenesis in non-small-cell lung cancer. J Clin Oncol 20:900–910

    CAS  PubMed  Google Scholar 

  72. Ugurel S, Rappl G, Tilgen W, Reinhold U (2001) Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol 19:577–583

    Article  CAS  PubMed  Google Scholar 

  73. Huang S, Mills L, Mian B et al (2002) Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 161:125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Green AR, Green VL, White MC, Speirs V (1997) Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours. Int J Cancer 72:937–941

    Article  CAS  PubMed  Google Scholar 

  75. Miller LJ, Kurtzman SH, Wang Y et al (1998) Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissue. Anticancer Res 18:77–81

    CAS  PubMed  Google Scholar 

  76. Strieter RM, Kunkel SL, Elner VM et al (1992) Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol 141:1279–1284

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Koch AE, Polverini PJ, Kunkel SL et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801

    Article  CAS  PubMed  Google Scholar 

  78. Hu DE, Hori Y, Fan TP (1993) Interleukin-8 stimulates angiogenesis in rats. Inflammation 17:135–143

    Article  CAS  PubMed  Google Scholar 

  79. Li A, Dubey S, Varney ML et al (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170:3369–3376

    Article  CAS  PubMed  Google Scholar 

  80. Kunz M, Hartmann A, Flory E et al (1999) Anoxia-induced up-regulation of interleukin-8 in human malignant melanoma. A potential mechanism for high tumor aggressiveness. Am J Pathol 155:753–763

    Google Scholar 

  81. www.rndsystems.com/products/human-cxcl8-il-8-quantikine-elisa-kit_d8000c. In Edition

  82. Lyon DE, McCain NL, Walter J, Schubert C (2008) Cytokine comparisons between women with breast cancer and women with a negative breast biopsy. Nurs Res 57:51–58

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ahmed OI, Adel AM, Diab DR, Gobran NS (2006) Prognostic value of serum level of interleukin-6 and interleukin-8 in metastatic breast cancer patients. Egypt J Immunol 13:61–68

    Google Scholar 

  84. Fuksiewicz M, Kaminska J, Kotowicz B et al (2006) Serum cytokine levels and the expression of estrogen and progesterone receptors in breast cancer patients. Clin Chem Lab Med 44:1092–1097

    Article  CAS  PubMed  Google Scholar 

  85. Kozlowski L, Zakrzewska I, Tokajuk P, Wojtukiewicz MZ (2003) Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz Akad Med Bialymst 48:82–84

    CAS  PubMed  Google Scholar 

  86. Zakrzewska I, Omyla J (2005) [The value of plasma interleukin-6 and interleukin-8 in monitoring of patients with breast cancer]. Pol Merkur Lekarski 18:424–426

    Google Scholar 

  87. Hamed EA, Zakhary MM, Maximous DW (2012) Apoptosis, angiogenesis, inflammation, and oxidative stress: basic interactions in patients with early and metastatic breast cancer. J Cancer Res Clin Oncol 138:999–1009

    Article  CAS  PubMed  Google Scholar 

  88. Pusztai L, Mendoza TR, Reuben JM et al (2004) Changes in plasma levels of inflammatory cytokines in response to paclitaxel chemotherapy. Cytokine 25:94–102

    Article  CAS  PubMed  Google Scholar 

  89. Derin D, Soydinc HO, Guney N et al (2007) Serum IL-8 and IL-12 levels in breast cancer. Med Oncol 24:163–168

    Article  CAS  PubMed  Google Scholar 

  90. Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437:199–213

    Article  CAS  PubMed  Google Scholar 

  91. Taraboletti G, Rusnati M, Ragona L, Colombo G (2010) Targeting tumor angiogenesis with TSP-1-based compounds: rational design of antiangiogenic mimetics of endogenous inhibitors. Oncotarget 1:662–673

    Article  PubMed  PubMed Central  Google Scholar 

  92. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    CAS  PubMed  Google Scholar 

  93. Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197

    Article  CAS  PubMed  Google Scholar 

  94. Presta M, Dell’Era P, Mitola S et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178

    Article  CAS  PubMed  Google Scholar 

  95. Xian W, Pappas L, Pandya D et al (2009) Fibroblast growth factor receptor 1-transformed mammary epithelial cells are dependent on RSK activity for growth and survival. Cancer Res 69:2244–2251

    Article  CAS  PubMed  Google Scholar 

  96. Xian W, Schwertfeger KL, Vargo-Gogola T, Rosen JM (2005) Pleiotropic effects of FGFR1 on cell proliferation, survival, and migration in a 3D mammary epithelial cell model. J Cell Biol 171:663–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yoshimura N, Sano H, Hashiramoto A et al (1998) The expression and localization of fibroblast growth factor-1 (FGF-1) and FGF receptor-1 (FGFR-1) in human breast cancer. Clin Immunol Immunopathol 89:28–34

    Article  CAS  PubMed  Google Scholar 

  98. Penault-Llorca F, Bertucci F, Adelaide J et al (1995) Expression of FGF and FGF receptor genes in human breast cancer. Int J Cancer 61:170–176

    Article  CAS  PubMed  Google Scholar 

  99. Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Slavin J (1995) Fibroblast growth factors: at the heart of angiogenesis. Cell Biol Int 19:431–444

    Article  CAS  PubMed  Google Scholar 

  101. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gospodarowicz D (1974) Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249:123–127

    Article  CAS  PubMed  Google Scholar 

  103. Przybylski M (2009) A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care 18:516–519

    Article  CAS  PubMed  Google Scholar 

  104. Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831

    Google Scholar 

  105. Turner N, Lambros MB, Horlings HM et al (2010) Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29:2013–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Giulianelli S, Cerliani JP, Lamb CA et al (2008) Carcinoma-associated fibroblasts activate progesterone receptors and induce hormone independent mammary tumor growth: a role for the FGF-2/FGFR-2 axis. Int J Cancer 123:2518–2531

    Article  CAS  PubMed  Google Scholar 

  107. Relf M, LeJeune S, Scott PA et al (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57:963–969

    CAS  PubMed  Google Scholar 

  108. Anandappa SY, Winstanley JH, Leinster S et al (1994) Comparative expression of fibroblast growth factor mRNAs in benign and malignant breast disease. Br J Cancer 69:772–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Smith K, Fox SB, Whitehouse R et al (1999) Upregulation of basic fibroblast growth factor in breast carcinoma and its relationship to vascular density, oestrogen receptor, epidermal growth factor receptor and survival. Ann Oncol 10:707–713

    Article  CAS  PubMed  Google Scholar 

  110. Dabrosin C (2005) Positive correlation between estradiol and vascular endothelial growth factor but not fibroblast growth factor-2 in normal human breast tissue in vivo. Clin Cancer Res 11:8036–8041

    Google Scholar 

  111. Hewala TI, Abd El-Moneim NA, Ebied SA et al (2010) Diagnostic and prognostic value of serum nitric oxide, tumor necrosis factor-alpha, basic fibroblast growth factor and copper as angiogenic markers in premenopausal breast cancer patients: a case-control study. Br J Biomed Sci 67:167–176

    Article  CAS  PubMed  Google Scholar 

  112. Sliutz G, Tempfer C, Obermair A et al (1995) Serum evaluation of basic FGF in breast cancer patients. Anticancer Res 15:2675–2677

    CAS  PubMed  Google Scholar 

  113. Kornacker M, Roth A, Christensen O et al (2008) Quantification of vascular endothelial growth factor, interleukin-8, and basic fibroblast growth factor in plasma of cancer patients and healthy volunteers—comparison of ELISA and microsphere-based multiplexed immunoassay. Clin Chem Lab Med 46:1256–1264

    Article  CAS  PubMed  Google Scholar 

  114. Larsson A, Skoldenberg E, Ericson H (2002) Serum and plasma levels of FGF-2 and VEGF in healthy blood donors. Angiogenesis 5:107–110

    Article  CAS  PubMed  Google Scholar 

  115. Fuhrmann-Benzakein E, Ma MN, Rubbia-Brandt L et al (2000) Elevated levels of angiogenic cytokines in the plasma of cancer patients. Int J Cancer 85:40–45

    Article  CAS  PubMed  Google Scholar 

  116. www.rndsystems.com/products/human-fgf-basic-quantikine-elisa-kit_dfb50. In Edition

  117. Kim RH, Takabe K, Milstien S, Spiegel S (1791) Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta 2009:692–696

    Google Scholar 

  118. Anelli V, Gault CR, Snider AJ, Obeid LM (2010) Role of sphingosine kinase-1 in paracrine/transcellular angiogenesis and lymphangiogenesis in vitro. FASEB J 24:2727–2738

    Google Scholar 

  119. Pyne S, Pyne NJ (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349:385–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nagahashi M, Ramachandran S, Kim EY et al (2012) Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 72:726–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Aoyagi T, Nagahashi M, Yamada A, Takabe K (2012) The role of sphingosine-1-phosphate in breast cancer tumor-induced lymphangiogenesis. Lymphat Res Biol 10:97–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cuvillier O, Ader I, Bouquerel P et al (2010) Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting. Curr Mol Pharmacol 3:53–65

    Google Scholar 

  123. Nava VE, Hobson JP, Murthy S et al (2002) Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Exp Cell Res 281:115–127

    Article  CAS  PubMed  Google Scholar 

  124. Takuwa N, Du W, Kaneko E et al (2011) Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1—Jekyll Hidden behind Hyde. Am J Cancer Res 1:460–481

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ader I, Malavaud B, Cuvillier O (2009) When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Res 69:3723–3726

    Article  CAS  PubMed  Google Scholar 

  126. Ruckhaberle E, Rody A, Engels K et al (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 112:41–52

    Google Scholar 

  127. Atkin GK, Chopada A (2006) Tumour angiogenesis: the relevance to surgeons. Ann R Coll Surg Engl 88:525–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bansal GS, Yiangou C, Coope RC et al (1995) Expression of fibroblast growth factor 1 is lower in breast cancer than in the normal human breast. Br J Cancer 72:1420–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jaakkola S, Salmikangas P, Nylund S et al (1993) Amplification of fgfr4 gene in human breast and gynecological cancers. Int J Cancer 54:378–382

    Article  CAS  PubMed  Google Scholar 

  130. La Rosa S, Sessa F, Colombo L et al (2001) Expression of acidic fibroblast growth factor (aFGF) and fibroblast growth factor receptor 4 (FGFR4) in breast fibroadenomas. J Clin Pathol 54:37–41

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mohammed RA, Green A, El-Shikh S et al (2007) Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer 96:1092–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhao YC, Ni XJ, Li Y et al (2012) Peritumoral lymphangiogenesis induced by vascular endothelial growth factor C and D promotes lymph node metastasis in breast cancer patients. World J Surg Oncol 10:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li X, Dang X, Sun X (2012) Expression of survivin and VEGF-C in breast cancer tissue and its relation to lymphatic metastasis. Eur J Gynaecol Oncol 33:178–182

    CAS  PubMed  Google Scholar 

  134. Nakamura Y, Yasuoka H, Tsujimoto M et al (2003) Clinicopathological significance of vascular endothelial growth factor-C in breast carcinoma with long-term follow-up. Mod Pathol 16:309–314

    Article  PubMed  Google Scholar 

  135. Wang J, Guo Y, Wang B et al (2012) Lymphatic microvessel density and vascular endothelial growth factor-C and -D as prognostic factors in breast cancer: a systematic review and meta-analysis of the literature. Mol Biol Rep 39:11153–11165

    Article  CAS  PubMed  Google Scholar 

  136. Normanno N, De Luca A, Bianco C et al (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16

    Article  CAS  PubMed  Google Scholar 

  137. Hardy KM, Booth BW, Hendrix MJ et al (2010) ErbB/EGF signaling and EMT in mammary development and breast cancer. J Mammary Gland Biol Neoplasia 15:191–199

    Article  PubMed  PubMed Central  Google Scholar 

  138. Foley J, Nickerson NK, Nam S et al (2010) EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol 21:951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tabernero J (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 5:203–220

    Article  CAS  PubMed  Google Scholar 

  140. Sun J (2010) Matrix metalloproteinases and tissue inhibitor of metalloproteinases are essential for the inflammatory response in cancer cells. J Signal Transduct 2010:985132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Qi JH, Ebrahem Q, Moore N et al (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9:407–415

    Article  CAS  PubMed  Google Scholar 

  142. Jiang X, Huang X, Li J et al (2000) [Relationship between tissue inhibitors of metalloproteinase and metastasis and prognosis in breast cancer]. Zhonghua Wai Ke Za Zhi 38:291–293, 219

    Google Scholar 

  143. Peterson NB, Beeghly-Fadiel A, Gao YT et al (2009) Polymorphisms in tissue inhibitors of metalloproteinases-2 and -3 and breast cancer susceptibility and survival. Int J Cancer 125:844–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lopez-Dee Z, Pidcock K, Gutierrez LS (2011) Thrombospondin-1: multiple paths to inflammation. Mediat Inflamm 2011:296069

    Article  CAS  Google Scholar 

  145. Kyriakides TR, Maclauchlan S (2009) The role of thrombospondins in wound healing, ischemia, and the foreign body reaction. J Cell Commun Signal 3:215–225

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhang X, Lawler J (2007) Thrombospondin-based antiangiogenic therapy. Microvasc Res 74:90–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Clezardin P, Frappart L, Clerget M et al (1993) Expression of thrombospondin (TSP1) and its receptors (CD36 and CD51) in normal, hyperplastic, and neoplastic human breast. Cancer Res 53:1421–1430

    CAS  PubMed  Google Scholar 

  148. Bertin N, Clezardin P, Kubiak R, Frappart L (1997) Thrombospondin-1 and -2 messenger RNA expression in normal, benign, and neoplastic human breast tissues: correlation with prognostic factors, tumor angiogenesis, and fibroblastic desmoplasia. Cancer Res 57:396–399

    CAS  PubMed  Google Scholar 

  149. Abreu-Velez AM, Howard MS (2012) Collagen IV in normal skin and in pathological processes. N Am J Med Sci 4:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  150. Jiang CP, Wu BH, Chen SP et al (2013) High COL4A3 expression correlates with poor prognosis after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Tumour Biol 34:415–420

    Article  CAS  PubMed  Google Scholar 

  151. Nie XC, Wang JP, Zhu W et al (2013) COL4A3 expression correlates with pathogenesis, pathologic behaviors, and prognosis of gastric carcinomas. Hum Pathol 44:77–86

    Article  CAS  PubMed  Google Scholar 

  152. Apte RN, Dotan S, Elkabets M et al (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25:387–408

    Google Scholar 

  153. Guo S, Gonzalez-Perez RR (2011) Notch, IL-1 and leptin crosstalk outcome (NILCO) is critical for leptin-induced proliferation, migration and VEGF/VEGFR-2 expression in breast cancer. PLoS One 6:e21467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ren JG, Jie C, Talbot C (2005) How PEDF prevents angiogenesis: a hypothesized pathway. Med Hypotheses 64:74–78

    Article  CAS  PubMed  Google Scholar 

  155. Rundqvist H, Johnson RS (2013) Tumour oxygenation: implications for breast cancer prognosis. J Intern Med 274:105–112

    Article  CAS  PubMed  Google Scholar 

  156. Fukuhara S, Sako K, Noda K et al (2010) Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol Histopathol 25:387–396

    CAS  PubMed  Google Scholar 

  157. Tait CR, Jones PF (2004) Angiopoietins in tumours: the angiogenic switch. J Pathol 204:1–10

    Article  CAS  PubMed  Google Scholar 

  158. Woodfin A, Voisin MB, Nourshargh S (2007) PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 27:2514–2523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios K. Georgiou M.D., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Georgiou, G.K., Briasoulis, E. (2017). Peri-operative Shift in Angiogenesis-Related Factors in Breast Cancer Patients. In: Retsky, M., Demicheli, R. (eds) Perioperative Inflammation as Triggering Origin of Metastasis Development. Springer, Cham. https://doi.org/10.1007/978-3-319-57943-6_3

Download citation

Publish with us

Policies and ethics