Advertisement

Towards a Physical Scale Decomposition of Mean Skin Friction Generation in the Turbulent Boundary Layer

  • Nicolas RenardEmail author
  • Sébastien Deck
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 196)

Abstract

A decomposition of mean skin friction generation in zero-pressure-gradient boundary layers is presented, relying on an energy budget in an absolute reference frame. It has a direct physical interpretation and emphasizes the importance of the production of turbulent kinetic energy in the logarithmic layer in mean skin friction generation at very high Reynolds number. This leads to a new approach to the scale decomposition of mean skin friction, illustrated using a Wall-Resolved LES at \(Re_\theta \) = 13,000 obtained by the ZDES technique. The role of superstructures is especially discussed.

Notes

Acknowledgements

The authors wish to thank all the people involved in the past and present evolution of the FLU3M code. Romain Laraufie and Pierre-Élie Weiss are warmly acknowledged for very stimulating discussions. The WRLES computation was made thanks to the HPC resources from GENCI-CINES (Project ZDESWALLTURB, Grant 2012-[c2012026817]).

References

  1. 1.
    B. Aupoix, Couches Limites Bidimensionnelles Compressibles. Descriptif et Mode d’emploi du Code CLICET—Version 2010. Technical Report RT 1/117015 DMAE, Onera (2010)Google Scholar
  2. 2.
    S. Deck, Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid. Dyn. 26, 523–550 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Deck, N. Renard, R. Laraufie, P.E. Weiss, Large scale contribution to mean wall shear stress in high Reynolds number flat plate boundary layers up to \(Re_\theta \) =13,650. J. Fluid. Mech. 743, 202–248 (2014).Google Scholar
  4. 4.
    D.B. DeGraaff, J.K. Eaton, Reynolds number scaling of the flat plate turbulent boundary layer. J. Fluid. Mech. 422, 319–346 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    G. Eitel-Amor, R. Örlü, P. Schlatter, Simulation and validation of a spatially evolving turbulent boundary layer up to \(Re_\theta \) = 8,300. Int. J. Heat. Fluid. Flow. 47, 57–69 (2014)CrossRefGoogle Scholar
  6. 6.
    K. Fukagata, K. Iwamoto, N. Kasagi, Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids. 14(11), 73–76 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    W. Jones, B. Launder, The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat. Mass. Trans. 15(2), 301–314 (1972)CrossRefGoogle Scholar
  8. 8.
    I. Marusic, G. Kunkel, Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids. 15(8), 2461–2464 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    I. Marusic, A. Uddin, A. Perry, Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers. Phys. Fluids. 9, 3718–3726 (1997)CrossRefGoogle Scholar
  10. 10.
    R. Michel, C. Quémard, R. Durant, Application d’un schéma de longueur de mélange à l’étude des couches limites turbulentes d’équilibre. Note Technique 154, ONERA (1969)Google Scholar
  11. 11.
    P. Orlandi, J. Jiménez, On the generation of turbulent wall friction. Phys. Fluids. 6, 634–641 (1994)CrossRefGoogle Scholar
  12. 12.
    N. Renard, S. Deck, On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number \(Re_\theta \) = 13,000. J. Fluid. Mech. 775, 105–148 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    N. Renard, S. Deck, A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid. Mech. 790, 339–367 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    P. Schlatter, R. Örlü, Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid. Mech. 659, 116–126 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    J. Sillero, J. Jimenez, R. Moser, One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to \(\delta ^+\approx 2000\). Phys. Fluids. 25, 105102 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Sillero, J. Jimenez, R. Moser, Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to \(\delta ^+\approx 2000\). Phys. Fluids. 26, 105109 (2014)CrossRefGoogle Scholar
  17. 17.
    A.J. Smits, B.J. McKeon, I. Marusic, High-Reynolds number wall turbulence. Ann. Rev. Fluid. Mech. 43, 353–375 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Onera The French Aerospace LabMeudonFrance

Personalised recommendations