Skip to main content

Heat Transport in Horizontal and Inclined Convection

  • Conference paper
  • First Online:
Progress in Turbulence VII

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 196))

  • 910 Accesses

Abstract

We discuss three classical paradigmatic systems of thermally driven flows: Rayleigh–Bénard convection, where a fluid is confined between a heated bottom plate and a cooled top plate, horizontal convection, where the fluid is heated at one part of the bottom and cooled at some other part, and vertical convection, where the fluid is confined between two differently heated isothermal vertical plates. Rayleigh–Bénard and vertical convection can be also considered as limiting cases of so-called inclined convection. For these systems we study how the heat and momentum transport, which is represented by the Nusselt number and Reynolds number, scales with the main governing parameters of the system, which are the Rayleigh number and Prandtl number. We show that different boundary conditions generally lead to different scaling diagrams in the Prandtl–Rayleigh plane. For laminar vertical convection the scalings can be derived from the boundary layer equations, see Shishkina (Phys Rev E 93:051102, 2016, [8]). In the case of horizontal convection, the scalings can be derived from the analysis of the boundary-layer and bulk contributions of the kinetic and thermal dissipation rates, see Shishkina et al. (Geophys Res Lett 43:1219–1225, 2016, [5]). Here we summarize some previous results and discuss the applicability of the developed theory to global ocean circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Ahlers, S. Grossmann, D. Lohse, Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503–537 (2009)

    Article  Google Scholar 

  2. F. Chillà, J. Schumacher, New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58 (2012)

    Article  Google Scholar 

  3. G.O. Hughes, R.W. Griffiths, Horizontal convection. Ann. Rev. Fluid Mech. 40, 185–208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. R.W. Griffiths, G.O. Hughes, B. Gayen, Horizontal convection dynamics: insights from transient adjustment. J. Fluid Mech. 726, 559–595 (2013)

    Article  MATH  Google Scholar 

  5. O. Shishkina, S. Grossmann, D. Lohse, Heat and momentum transport scalings in horizontal convection. Geophys. Res. Lett. 43, 1219–1225 (2016)

    Article  Google Scholar 

  6. O. Shishkina, S. Grossmann, D. Lohse, Prandtl-number dependences of the heat and momentum transport in horizontal convection. Proc. IUTAM 00, 000–000 (2016)

    Google Scholar 

  7. S. Ostrach, An analysis of laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. NACA report, vol. 1111 (1953)

    Google Scholar 

  8. O. Shishkina, Momentum and heat transport scalings in laminar vertical convection. Phys. Rev. E (R) 93, 051102 (2016)

    Article  Google Scholar 

  9. C.S. Ng, A. Ooi, D. Lohse, D. Chung, Vertical natural convection: application of the unifying theory of thermal convection. J. Fluid Mech. 764, 349–361 (2015)

    Article  MathSciNet  Google Scholar 

  10. S. Grossmann, D. Lohse, Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Grossmann, D. Lohse, Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 3316–3319 (2001)

    Article  Google Scholar 

  12. P. Frick, R. Khalilov, I. Kolesnichenko, A. Mamykin, V. Pakholkov, A. Pavlinov, S.A. Rogozhkin, Turbulent convective heat transfer in a long cylinder with liquid sodium. Europhys. Lett. 109, 14002 (2015)

    Article  Google Scholar 

  13. O. Shishkina, S. Horn, Thermal convection in inclined cylindrical containers. J. Fluid Mech. 790, R3 (2016)

    Article  MathSciNet  Google Scholar 

  14. O. Shishkina, S. Horn, S. Wagner, E.S.C. Ching, Thermal boundary layer equation for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 114, 114302 (2015)

    Article  Google Scholar 

  15. H.T. Rossby, On thermal convection driven by non-uniform heating from below: an experimental study. Deep Sea Res. 12, 9–16 (1965)

    Google Scholar 

  16. J.H. Siggers, R.R. Kerswell, N.J. Balmforth, Bounds on horizontal convection. J. Fluid Mech. 517, 55–70 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Shishkina, Mean flow structure in horizontal convection. J. Fluid Mech. 812, 525–540 (2017)

    Google Scholar 

  18. O. Shishkina, S. Wagner, Prandtl-number dependence of heat transport in laminar horizontal convection. Phys. Rev. Lett. 116, 024302 (2016)

    Article  Google Scholar 

  19. W. Munk, C. Wunsch, Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. 45, 1977–2010 (1998)

    Article  Google Scholar 

  20. L.D. Landau, E.M. Lifshitz, Fluid Mechanics. Course of Theoretical Physics, vol. 6, 2nd edn. (Butterworth-Heinemann, Oxford, 1987)

    Google Scholar 

Download references

Acknowledgements

OS is grateful to G. Ahlers, E. Bodenschatz, E. Ching, S. Grossmann, X. He, S. Horn, D. Lohse and S. Weiss for useful discussions and acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) under Grant Sh405/4 – Heisenberg fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Shishkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shishkina, O. (2017). Heat Transport in Horizontal and Inclined Convection. In: Örlü, R., Talamelli, A., Oberlack, M., Peinke, J. (eds) Progress in Turbulence VII. Springer Proceedings in Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-319-57934-4_35

Download citation

Publish with us

Policies and ethics