Progress in Turbulence VII pp 233-238 | Cite as

# Structure of Turbulence in a Flow Around a Rectangular Cylinder

## Abstract

The behaviour of the flow over a finite blunt plate with square leading and trailing edge corners at moderate Reynolds number is studied by means of a Direct Numerical Simulation. The chord-to-thickness ratio of the plate is 5 and the Reynolds number is \(Re = U_\infty \cdot D / \nu = 3 \times 10^3\) where \(U_\infty \) and *D* are the free-stream velocity and the thickness, respectively. The flow separates at the leading edge corner developing in a strong free-shear. The flow reattaches on the solid surface upstream the trailing edge and evolves in typical large-scale shedding beyond it. To the authors knowledge, this is the first time that high-fidelity three-dimensional data are produced to analyze in detail the flow features of such a system. Preliminary results on the flow topology will be presented in this work. In particular, the streamlines of the mean flow and the instantaneous three-dimensional turbulent structures via \(\lambda _2\) vortex criterion will be examinated.

## References

- 1.L. Bruno, M.V. Salvetti, F. Ricciardelli, Benchmark on the aerodynamics of a rectangular 5: 1 cylinder: an overview after the first four years of activity. J. Wind Eng. Ind. Aerodyn.
**126**, 87–106 (2014)CrossRefGoogle Scholar - 2.N.J. Cherry, R. Hillier, M.E.M.P. Latour, Unsteady measurements in a separated and reattaching flow. J. Fluid Mech.
**144**, 13–46 (1984)CrossRefGoogle Scholar - 3.K. Hourigan, M.C. Thomson, B.T. Tan, Self-sustained oscillations in flows around long blunt plates. J. Fluid Struct.
**15**, 387–398 (2001)CrossRefGoogle Scholar - 4.Y. Nakamura, Y. Ohya, H. Tsuruta, Experiments on vortex shedding from flat plates with square leading and trailing edges. J. Fluid Mech.
**222**, 437–447 (1991)CrossRefGoogle Scholar - 5.Y. Ohya, Y. Nakamura, S. Ozono, H. Tsuruta, R. Nakayama, A numerical study of vortex shedding from flat plates with square leading and trailing edges. J. Fluid Mech.
**236**, 445–460 (1992)CrossRefzbMATHGoogle Scholar - 6.K. Sasaki, M. Kiya, Three-dimensional vortex structure in a leading-edge separation bubble at moderate Reynolds numbers. ASME J. Fluids Eng.
**113**, 405–410 (1991)CrossRefGoogle Scholar - 7.T. Tamura, Y. Itoh, K. Kuwahara, Computational separated-reattaching flows around a rectangular cylinder. J. Wind Eng. Ind. Aerodyn.
**50**, 9–18 (1993)CrossRefGoogle Scholar - 8.B.T. Tan, M.C. Thompson, K. Hourigan, Flow past rectangular cylinders: receptivity to trtansverse forcing. J. Fluid Mech.
**515**, 33–62 (2004)CrossRefzbMATHGoogle Scholar - 9.H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
**12**, 620–631 (1998)CrossRefGoogle Scholar