A Framework for the Assessment and Creation of Subgrid-Scale Models for Large-Eddy Simulation

  • Maurits H. SilvisEmail author
  • Ronald A. Remmerswaal
  • Roel Verstappen
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 196)


We focus on subgrid-scale modeling for large-eddy simulation of incompressible turbulent flows. In particular, we follow a systematic approach that is based on the idea that subgrid-scale models should preserve fundamental properties of the Navier–Stokes equations and turbulent stresses. To that end, we discuss the symmetries and conservation laws of the Navier–Stokes equations, as well as the near-wall scaling, realizability and dissipation behavior of the turbulent stresses. Regarding each of these properties as a model constraint, we obtain a framework that can be used to assess existing and create new subgrid-scale models. We show that several commonly used velocity-gradient-based subgrid-scale models do not exhibit all the desired properties. Although this can partly be explained by incompatibilities between model constraints, we believe there is room for improvement in the properties of subgrid-scale models. As an example, we provide a new eddy viscosity model, based on the vortex stretching magnitude, that is successfully tested in large-eddy simulations of turbulent plane-channel flow.



The authors thankfully acknowledge Professor Martin Oberlack for stimulating discussions during several stages of this project. Professor Michel Deville is kindly acknowledged for sharing his insights relating to nonlinear subgrid-scale models and realizability. This work is part of the research programme Free Competition in the Physical Sciences with project number 613.001.212, which is financed by the Netherlands Organisation for Scientific Research (NWO).


  1. 1.
    D. Carati, G.S. Winckelmans, H. Jeanmart, J. Fluid Mech. 441, 119 (2001)CrossRefGoogle Scholar
  2. 2.
    D.R. Chapman, G.D. Kuhn, J. Fluid Mech. 170, 265 (1986)CrossRefGoogle Scholar
  3. 3.
    A.F. Cheviakov, M. Oberlack, J. Fluid Mech. 760, 368 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    R.A. Clark, J.H. Ferziger, W.C. Reynolds, J. Fluid Mech. 91, 1 (1979)CrossRefGoogle Scholar
  5. 5.
    M. Germano, U. Piomelli, P. Moin, W.H. Cabot, Phys. Fluids A 3, 1760 (1991)CrossRefGoogle Scholar
  6. 6.
    A. Leonard, in Turbulent Diffusion, ed. by F.N. Frenkiel, R.E. Munn. Environmental Pollution, Adv. Geophys., vol. 18 A (Academic Press, New York, 1974), pp. 237–248Google Scholar
  7. 7.
    L. Marstorp, G. Brethouwer, O. Grundestam, A.V. Johansson, J. Fluid Mech. 639, 403 (2009)CrossRefGoogle Scholar
  8. 8.
    R.D. Moser, J. Kim, N.N. Mansour, Phys. Fluids 11, 943 (1999)CrossRefGoogle Scholar
  9. 9.
    F. Nicoud, F. Ducros, Flow Turbul. Combust. 62, 183 (1999)CrossRefGoogle Scholar
  10. 10.
    F. Nicoud, H. Baya Toda, O. Cabrit, S. Bose, J. Lee, Phys. Fluids 23, 085106 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Oberlack, Annual Research Briefs (Center for Turbulence Research, Stanford University, Stanford, 1997)Google Scholar
  12. 12.
    M. Oberlack, in Theories of Turbulence, ed. by M. Oberlack, F. Busse. International Centre for Mechanical Sciences, vol. 442 (Springer, Vienna, 2002), pp. 301–366Google Scholar
  13. 13.
    D. Razafindralandy, A. Hamdouni, M. Oberlack, Eur. J. Mech. B 26, 531 (2007)CrossRefGoogle Scholar
  14. 14.
    W. Rozema, H.J. Bae, P. Moin, R. Verstappen, Phys. Fluids 27, 085107 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Sagaut, Large Eddy Simulation for Incompressible Flows, 3rd edn. (Springer, Berlin, 2006)zbMATHGoogle Scholar
  16. 16.
    M.H. Silvis, R.A. Remmerswaal, R. Verstappen, Phys. Fluids 29, 015105 (2017)Google Scholar
  17. 17.
    J. Smagorinsky, Mon. Weather Rev. 91, 99 (1963)CrossRefGoogle Scholar
  18. 18.
    C.G. Speziale, J. Fluid Mech. 156, 55 (1985)CrossRefGoogle Scholar
  19. 19.
    F.X. Trias, D. Folch, A. Gorobets, A. Oliva, Phys. Fluids 27, 065103 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Verstappen, J. Sci. Comput. 49, 94 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R.W.C.P. Verstappen, A.E.P. Veldman, J. Comput. Phys. 187, 343 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    A.W. Vreman, Phys. Fluids 16, 3670 (2004)CrossRefGoogle Scholar
  23. 23.
    B. Vreman, B. Geurts, H. Kuerten, J. Fluid Mech. 278, 351 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maurits H. Silvis
    • 1
    Email author
  • Ronald A. Remmerswaal
    • 1
  • Roel Verstappen
    • 1
  1. 1.University of GroningenGroningenThe Netherlands

Personalised recommendations