Advertisement

Turbulent Pipe Flow Near-Wall Statistics

  • Tommaso Fiorini
  • Gabriele Bellani
  • Ramis Örlü
  • Antonio Segalini
  • P. Henrik Alfredsson
  • Alessandro TalamelliEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 196)

Abstract

Results from the first experimental campaign in the Long Pipe facility of the CICLoPE laboratory are reported. Single hot-wire profile measurements are presented, taken from the wall up to one third of the pipe radius, with the friction Reynolds number \(Re_{\tau }\) ranging from \( 6.5 \times 10^3\) up to \( 3.8 \times 10^4\). Measurements of the pressure drop along the pipe are presented together with an estimation of its uncertainty. Mean and variance of the streamwise velocity fluctuations are examined and compared with the findings from other facilities. The amplitude of the inner-scaled near-wall peak of the variance, after being corrected for spatial resolution effects, shows an increasing trend with Reynolds number, in accordance with low Reynolds number experiments and simulations.

Notes

Acknowledgements

Financially supported through the European High-Performance Infrastructures in Turbulence (EuHIT) within the Reynolds stress tensor scaling in turbulent pipe flow (Re-Scale) project.

References

  1. 1.
    I. Marusic, B.J. McKeon, P.A. Monkewitz, H.M. Nagib, A.J. Smits, K.R. Sreenivasan, Wall-bounded turbulent flows at high Reynolds number: recent advance and key issues. Phys. Fluids 22, 065103 (2010)Google Scholar
  2. 2.
    J. Kim, Progress in pipe and channel flow turbulence 1961–2011. J. Turbul. 13, N45 (2012)Google Scholar
  3. 3.
    A.J. Smits, B.J. McKeon, I. Marusic, High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    A. Talamelli, F. Persiani, J.H.M. Fransson, P.H. Alfredsson, A.V. Johansson, M. Nagib, H. Rüedi, J.-D. Sreenivasan, P.A. Monkewitz, CICLoPE—a response to the need for high Reynolds number experiments. Fluid Dyn. Res. 41, 021407 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    N. Hutchins, T.B. Nickels, I. Marusic, M.S. Chong, Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103–136 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    G. Bellani, A. Talamelli, The final design of the long pipe in CICLOPE, in Springer Proceedings in Physics, Progress in Turbulence VI, Springer, pp. 205–209 (2016)Google Scholar
  7. 7.
    K.A. Chauhan, P.A. Monkewitz, H.M. Nagib, Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41, 021404 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    R. Örlü, T. Fiorini, G. Bellani, A. Segalini, P.H. Alfredsson, A. Talamelli, Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE. Phil. Trans. R. Soc. A 375, 20160187 (2017)Google Scholar
  9. 9.
    A.J. Smits, J. Monty, M. Hultmark, S.C.C. Bailey, N. Hutchins, I. Marusic, Spatial resolution correction for wall-bounded turbulence measurements. J. Fluid Mech. 676, 41–53 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    P.H. Alfredsson, R. Örlü, A. Segalini, A new formulation for the streamwise turbulence intensity distribution in wall-bounded turbulent flows. Eur. J. Mech. B/Fluids 36, 167–175 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    M. Hultmark, S.C.C. Bailey, A.J. Smits, Scaling of near-wall turbulence in pipe flow. J. Fluid Mech. 649, 103–113 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    M. Hultmark, M. Vallikivi, S.C.C. Bailey, A.J. Smits, Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 779, 371–389 (2012)zbMATHGoogle Scholar
  13. 13.
    M. Ferro, Experimental study on turbulent pipe flow. M.Sc. Thesis, KTH Mechanics, Royal Institute of Technology, Stockholm (2012)Google Scholar
  14. 14.
    R. Örlü, P.H. Alfredsson, Comment on the scaling of the near-wall streamwise variance peak in turbulent pipe flows. Exp. Fluids 54, 1431 (2013)Google Scholar
  15. 15.
    J.F. Morrison, B.J. McKeon, W. Jiang, A.J. Smits, Scaling of the streamwise velocity component in turbulent pipe flow. J. Fluid Mech. 508, 99–131 (2004)Google Scholar
  16. 16.
    M. Vallikivi, M. Hultmark, S.C.C. Bailey, A.J. Smits, Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe. Exp. Fluids 51, 1521–1527 (2011)CrossRefGoogle Scholar
  17. 17.
    P.H. Alfredsson, A. Segalini, R. Örlü, A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the “outer” peak. Phys. Fluids 23, 041702 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tommaso Fiorini
    • 1
  • Gabriele Bellani
    • 1
  • Ramis Örlü
    • 2
  • Antonio Segalini
    • 2
  • P. Henrik Alfredsson
    • 2
  • Alessandro Talamelli
    • 1
    Email author
  1. 1.DIN, Universita’ di BolognaForli’Italy
  2. 2.Linné FLOW Centre, KTH MechanicsStockholmSweden

Personalised recommendations