Emergence of Non-Gaussianity in Turbulence

  • Michael WilczekEmail author
  • Dimitar G. Vlaykov
  • Cristian C. Lalescu
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 196)


Fully developed turbulence is characterized by markedly non-Gaussian statistics. Here, we discuss some aspects of the relation between non-Gaussianity, the emergence of coherent structures and phase correlations in turbulence. Direct numerical simulations of homogeneous isotropic turbulence are used to demonstrate a fairly rapid emergence of non-Gaussian statistics from Gaussian initial conditions.



We acknowledge insightful discussions with Michele Buzzicotti and Miguel Bustamante. This work was supported by the Max Planck Society.


  1. 1.
    J. Jiménez, A.A. Wray, P.G. Saffman, R.S. Rogallo, The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 65–90 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Noullez, G. Wallace, W. Lempert, R.B. Miles, U. Frisch, Transverse velocity increments in turbulent flow using the RELIEF technique. J. Fluid Mech. 339, 287–307 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    T.S. Lundgren, Linearly forced isotropic turbulence in Annual Research Briefs (Center for Turbulence Research, Stanford), pp. 461–473 (2003)Google Scholar
  4. 4.
    C. Rosales, C. Meneveau, Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17(9), 095106 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. Jiménez, Turbulent velocity fluctuations need not be Gaussian. J. Fluid Mech. 376, 139–147 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Wilczek, A. Daitche, R. Friedrich, On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity. J. Fluid Mech. 676, 191–217 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Wilczek, R. Friedrich, Dynamical origins for non-Gaussian vorticity distributions in turbulent flows. Phys. Rev. E 80, 016316 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J.M. Bardeen, J.R. Bond, N. Kaiser, A.S. Szalay, The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15–61 (1986)CrossRefGoogle Scholar
  10. 10.
    R.H. Kraichnan, The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5(4), 497–543 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Buzzicotti, B.P. Murray, L. Biferale, M.D. Bustamante, Phase and precession evolution in the Burgers equation. Eur. Phys. J. E 39(3), 34 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Wilczek
    • 1
    Email author
  • Dimitar G. Vlaykov
    • 1
  • Cristian C. Lalescu
    • 1
  1. 1.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations