Skip to main content

CSUDDCC2: An Updated Diffusion Database for Cemented Carbides

  • Conference paper
  • First Online:
  • 1633 Accesses

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Cemented carbides are widely used in industry as cutting tools, wear parts, as a result of the high hardness and good toughness. A reliable diffusion database is critical to simulate microstructure evolution of cemented carbides. In 2014, we established version one of CSUDDCC1 (Central South University Diffusion Database for Cemented Carbides Version one). In this work, a description for the updated diffusion database CSUDDCC2 is presented. The atomic mobility database for fcc and liquid in C–W–Co–Fe–Ni–Cr–V–Ti–Ta–Nb–Zr–Mo–Al–N cemented carbides was established based on our new experimental data, literature data, first-principles calculation and theoretical assessment via the DICTRA (Diffusion Controlled TRAnsformation) software package. The atomic mobility parameters in liquid are theoretically calculated by the newly modified Sutherland equation, and the atomic mobility parameters in fcc phase are optimized by the diffusivities measured in the present work and from the literature. The mobility parameters for self-diffusion and impurity diffusion in metastable fcc structure were determined through a semi-empirical method or first-principles calculations. Comprehensive comparisons between calculated and measured diffusivities indicate that most of the experimental data can be well reproduced by the currently obtained atomic mobilities. Combining the thermodynamic database for cemented carbides , the diffusion database has been used to simulate the microstructure evolution during sintering of gradient cemented carbides. The simulated microstructure agrees reasonably with the experimentally observations.

This is a preview of subscription content, log in via an institution.

References

  1. H.O. Andrén, Microstructures of cemented carbonitrides. Mater. Des. 22, 8–491 (2001)

    Article  Google Scholar 

  2. H.E. Exner, Int. Met. Rev. 24, 149–173 (1979)

    Article  Google Scholar 

  3. Y. Liu, H.B. Wang, Z.Y. Long, P.K. Liaw, J.G. Yang, B.Y. Huang, Microstructural evolution and mechanical behaviors of graded cemented carbides. Mater. Sci. Eng. A. 426, 54–346 (2006)

    Google Scholar 

  4. T.E. Yang, J. Xiong, L. Sun, Z.X. Guo, D. Cao, Int. J. Miner. Metal. Mater. 18, 709–716 (2011)

    Article  Google Scholar 

  5. W.B. Zhang, Y. Du et al., CSUDDCC1—A diffusion database for multicomponent cemented carbides. Int. J. Refract. Met. Hard Mater. 43, 164–180 (2014)

    Article  Google Scholar 

  6. B. Sundman, B. Jansson, J.O. Andersson, CALPHAD 9, 153–190 (1985)

    Article  Google Scholar 

  7. J.O. Andersson, L. Hoeglund, B. Jansson, J. Agren, in Proceedings of the International Symposium on Fundamentals and Applications of Ternary Diffusion, 1990, pp. 153–163

    Google Scholar 

  8. B. Jönsson, Assessment of the mobility of carbon in fcc C–Cr–Fe–Ni alloys. Z. MetaIlkd. 85, 9–502 (1994)

    Google Scholar 

  9. J.O. Andersson, J. Ågren, Models for numerical treatment of multicomponent diffusion in simple phases. J. Appl. Phys. 72, 5–1350 (1992)

    Google Scholar 

  10. M. Ekroth, R. Frykholm, M. Lindholm, H.O. Andrén, J. Ågren, Gradient zones in WC–Ti(C, N)–Co-based cemented carbides: experimental study and computer simulations. Acta Mater. 48, 85–2177 (2000)

    Article  Google Scholar 

  11. J. Garcia, G. Lindwall, O. Prat, K. Frisk, Kinetics of formation of graded layers on cemented carbides: experimental investigations and DICTRA simulations. Int. J. Refract. Met. Hard Mater. 29, 9–256 (2011)

    Google Scholar 

  12. W.M. Chen, L.J. Zhang, D.D. Liu, Y. Du, C.Y. Tan, Diffusivities and atomic mobilities of Sn–Bi and Sn–Pb melts. J. Electron. Mater. 42, 70–1158 (2013)

    Google Scholar 

  13. W.B. Zhang, Y. Du, Y.B. Peng, W. Xie, G.H. Wen, S.Q. Wang, Experimental investigations and simulations of the effect of Ti and N content on formation of fcc-free surface layers in WC–Ti(C, N)–Co cemented carbides. Int. J. Refract. Met. Hard Mater. 41, 47–638 (2013)

    Google Scholar 

  14. L.J. Zhang, Y. Du et al., Diffusivities of an Al–Fe–Ni melt and their effects on the microstructure during solidification. Acta Mater. 58, 3664–3675 (2010)

    Article  Google Scholar 

  15. S. Dushman, I. Langmuir: Proc. Am. Phys. Soc. 113 (1992)

    Google Scholar 

  16. C. Zener, J. Appl. Phys. 22, 372 (1951)

    Article  Google Scholar 

  17. R.A. Swalin, J. Appl. Phys. 27, 554 (1956)

    Article  Google Scholar 

  18. M. Matina, Y. Wang, R. Arroyave, L.Q. Chen, Z.K. Liu, C. Wolverton, Phys. Rev. Lett. 100, 215901 (2008)

    Article  Google Scholar 

  19. D.D. Zhao, Y. Kong, A.J. Wang, L.C. Zhou, S.L. Cui et al., J. Phase Equilib. Diffus. 32, 128 (2011)

    Article  Google Scholar 

  20. J. Askill, Tracer Diffusion Data for Metals, Alloys, and Simple Oxides (IFI, Plenum, New York, 1970)

    Book  Google Scholar 

  21. M. Ahmadian, D. Wexler, T. Chandra, A. Calka, Int. J. Refract. Met. Hard Mater. 23, 155–159 (2005)

    Article  Google Scholar 

  22. C. Chen, L.J. Zhang, Y. Du et al., Diffusivities and atomic mobilities in disordered fcc and ordered L12 Ni–Al–W alloys. J. Alloys Compd. 645, 259–268 (2015)

    Article  Google Scholar 

  23. M.S.A. Karunaratne, D.C. Cox, P. Carter, R.C. Reed, Superalloys 2000, TMS (2000), pp. 263–272

    Google Scholar 

  24. C.E. Campbell, W.J. Boettinger, U.R. Kattner, Acta Mater. 50, 775–792 (2002)

    Article  Google Scholar 

  25. M. Hattori, N. Goto, Y. Murata, T. Koyama, M. Morinaga, Mater. Trans. 46, 163–166 (2005)

    Article  Google Scholar 

  26. J.F. Zhang, Paper in preparation (2017)

    Google Scholar 

  27. C. Zhang, Ph.D. thesis, Central South University (China), 2016 (unpublished work)

    Google Scholar 

  28. R. Warren, M.B. Waldron, Microstructural development during the liquid-phase sintering of cemented carbides. II. Carbide grain growth. Powder Met. 15(30), 180–201 (1972)

    Article  Google Scholar 

  29. M. Pellan, S. Lay, J.-M. Missiaen et al., Effect of Binder Composition on WC Grain Growth in cemented carbides. J. Am. Ceram. Soc. 98(11), 3596–3601 (2015)

    Article  Google Scholar 

  30. C. Chen, Ph.D. thesis, Central South University (China), 2016 (unpublished work)

    Google Scholar 

Download references

Acknowledgements

The financial support from National Natural Science Foundation of China (Grant No. 51371199) and Ministry of Industry and Information Technology of China (Grant No. 2015ZX04005008) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Deng, P. et al. (2017). CSUDDCC2: An Updated Diffusion Database for Cemented Carbides. In: Mason, P., et al. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017). The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-57864-4_16

Download citation

Publish with us

Policies and ethics