Skip to main content

ROVs and AUVs

  • Chapter
  • First Online:
Submarine Geomorphology

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The most significant breakthroughs in science are often made as a result of technological developments and innovation. A new capacity to gather more data, measure more precisely or make entirely new observations generally leads to new insights and fundamental understanding. The future of ocean research and exploration therefore lies in robotics: marine robotic systems can be deployed at depths and in environments that are out of direct reach for humans, they can work around the clock, and they can be autonomous, freeing up time and money for other activities. To advance the field of submarine geomorphology, the two types of robots that currently make the biggest difference are Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs). Other autonomous or robotic systems are available for marine research (e.g. gliders, autonomous surface vehicles, benthic crawlers etc.), but their application for geomorphological studies is less extensive. This chapter gives an overview of the main characteristics of ROVs and AUVs, their advantages and disadvantages, and their main applications for geomorphological research. In comparison to the other geomorphological methods discussed in this book, however, it has to be made clear that ROVs and AUVs are not so much methods per se, instead they are platforms from which existing and new approaches can be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barkby S, Williams S, Pizarro O, Jakuba M (2009) An efficient approach to bathymetric SLAM. In: The IEEE/RSJ international conference on intelligent robots and systems. St. Louis, USA, pp 219–224

    Google Scholar 

  • Bowen AD, Juakuba MV, Farr NE, Ware J, Taylor C, Gomez-Ibanez D, Machado CR, Pontbriand C (2013) An un-tethered ROV for routine access and intervention in the deep sea. In: Oceans 2013. IEEE, San Diego, p 7

    Google Scholar 

  • Bruno F, Bianco G, Muzzupappa M, Barone S, Razionale AV (2011) Experimentation of structured light and stereo vision for underwater 3D reconstruction. ISPRS J Photogrammetry Remote Sens 66:508–518. doi:10.1016/j.isprsjprs.2011.02.009

    Article  Google Scholar 

  • Caress DW, Thomas H, Kirkwood WJ, McEwen R, Henthorn R, Clague DA, Paull CK, Paduan J, Maier K (2008) High-resolution multibeam, sidescan and subbottom surveys using the MBARI AUV D. Allan B. In: Reynolds JR, Greene HG (eds) Marine habitat mapping technology for Alaska. Alaska Sea Grant College Program, Fairbanks, pp 47–69

    Google Scholar 

  • Carey DA, Rhoads DC, Hecker B (2003) Use of laser line scan for assessment of response of benthic habitats and demersal fish to seafloor disturbance. J Exp Mar Biol Ecol 285–286:435–452

    Article  Google Scholar 

  • Christ RD, Wernli RL (2007) The ROV manual. A user guide for Remotely Operated Vehicles, Elsevier, Amsterdam

    Google Scholar 

  • Connelly DP, Copley JT, Murton BJ, Stansfield K, Tyler PA, German CR, Van Dover CL, Amon D, Furlong M, Grindlay N, Hayman N, Hühnerbach V, Judge M, Le Bas T, McPhail S, Meier A, Nakamura K, Nye V, Pebody M, Pedersen R, Plouviez S, Sands C, Searle RC, Stevenson P, Taws S, Wilcox S (2012) Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre. Nature Commun 3(620):1–9. doi:10.1038/ncomms1636

    Google Scholar 

  • Cressey D (2014) Submersible loss hits research. Nature 509:408–409

    Article  Google Scholar 

  • Dupre S, Buffet G, Mascle J, Foucher J-P, Gauger S, Boetius A, Marfia C, Team TAA, Team TQR, party TBs (2008) High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys. Mar Geophys Res 29:275–290 doi:10.1007/s11001-009-9063-3

  • Escartin J, Barreye T, Cannat M, Garcia R, Gracias N, Deschamps A, Salocchi A, Sarradin P-M, Ballu V (2015) Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): distribution, heatflux, and geological controls. Earth Planet Sci Lett 431:173–185. doi:10.1016/j.epsl.2015.09.025

    Article  Google Scholar 

  • Friedman A, Pizarro O, Williams SB, Johnson-Robertson M (2012) Multi-scale measures of rugosity, slope and aspect from benthic stereo image reconstructions. PLoS ONE 7(12):e50440. doi:10.1371/journal.pone.0050440

    Article  Google Scholar 

  • Furlong M, Paxton D, Stevenson P, Pebody M, McPhail SD, Perrett J (2012) Autosub long range: a long range deep diving AUV for ocean monitoring. In: 2012 IEEE/OES Autonomous Underwater Vehicles. IEEE, Southampton, pp 1–7

    Google Scholar 

  • Gary M, Fairfield N, Stone WC, Wettergreen D, Kantor G, Sharp JM (2008) 3D Mapping and characterization of Sistema Zacaton from DEPTHX (DEep Phreatic THermal eXplorer). In: Yuhr LB, Alexander EC, Beck BF (eds) Sinkholes and the Engineering and Environmental Impacts of Karst, vol 183. American Society of Civil Engineers, Tallahassee, Florida, US, pp 202–212  

    Google Scholar 

  • Grasmueck M, Eberli GP, Viggiano DA, Correa T, Rathwell G, Luo J (2006) Autonomous Underwater Vehicle (AUV) mapping reveals coral mound distribution, morphology and oceanography in deep water of the Straits of Florida. Geophys Res Lett 33:L23616. doi:10.1029/2006GL027734

    Article  Google Scholar 

  • Griffiths G (2003) Technology and applications of Autonomous Underwater Vehicles. Taylor & Francis, London

    Google Scholar 

  • Hobson BW, Bellingham JG, Kieft R, McEwen R, Godin M, Zhang Y (2012) Tethys-class long range AUVs—extending the endurance of propeller-driven cruising AUVs from days to weeks. In: 2012 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, Southampton, pp 1–8

    Google Scholar 

  • Huvenne VAI, Beyer A, de Haas H, Dekindt K, Henriet JP, Kozachenko M, Olu-Le Roy K, Wheeler AJ, The TOBI/Pelagia 197 and CARACOLE Cruise Participants (2005) The seabed appearance of different coral bank provinces in the Porcupine Seabight, NE Atlantic: results from sidescan sonar and ROV seabed mapping. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 535–569

    Google Scholar 

  • Huvenne VAI, McPhail SD, Wynn RB, Furlong M, Stevenson P (2009) Mapping giant scours in the deep ocean. EOS 90(32):274–275

    Article  Google Scholar 

  • Huvenne VAI, Tyler PA, Masson DG, Fisher EH, Hauton C, Hühnerbach V, Le Bas TP, Wolff GA (2011) A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon. PLoS ONE 6(12):e28755. doi:10.1371/journal.pone.0028755

    Article  Google Scholar 

  • Huvenne VAI, Georgiopoulou A, Chaumillon L, Lo Iacono C, Wynn RB (2016) Novel method to map the morphology of submarine landslide headwall scarps using remotely operated vehicles. In: Lamarche G, Mountjoy J, Bull S, Hubble T, Krastel S, Lane E, Micallef A, Moscardelli L, Mueller C, Pecher I, Woelz S (eds) Submarine mass movements and their consequences, 7th international symposium, vol 41. Springer, Heidelberg, pp 135–144

    Google Scholar 

  • Jerosch K, Lüdtke A, Schlüter M, Ioannidis GT (2007) Automatic content-based analysis of georeferenced image data: detection of Beggiatoa mats in seafloor mosaics from the Håkon Mosby mud volcano. Comput Geosci 33(2):202–218

    Article  Google Scholar 

  • Kernow Marine Explorations Global Limited (2016) What are ROV’s. http://www.kmexgroup.com/whatr-are-rovs.html. Accessed 2 Aug 2016

  • Kinsey JC, Whitcomb LL (2004) Preliminary field experience with the DVLNAV integrated navigation system for oceanographic submersibles. Control Eng Pract 12:1541–1549. doi: 10.1016/j.conengprac.2003.12.010

  • Kwasnitschka T, Hansteen TH, Devey CW, Kutterolf S (2013) Doing fieldwork on the seafloor: photogrammetric techniques to yield 3D visual models from ROV video. Comput Geosci 52:218–226. doi:10.1016/j.cageo.2012.10.008

    Article  Google Scholar 

  • Lee Y-DE, George RY (2004) High-resolution geological AUV survey results across a portion of the eastern Sigsbee Escarpment. AAPG Bull 88(6):747–764. doi:10.1306/01260404011

    Article  Google Scholar 

  • Ling SD, Mahon I, Marzloff P, Pizarro O, Johnson CR, Williams SB (2016) Stereo-imaging AUV detects trends in sea urchin abundance on deep overgrazed reefs. Limnol Oceanogr Methods 17:293–304. doi:10.1002/lom3.10089

    Article  Google Scholar 

  • Macdonald HA, Wynn RB, Huvenne VAI, Peakall J, Masson DG, Weaver PPE, McPhail SD (2011) New insights into the morphology, fill, and remarkable longevity (>0.2 m.y.) of modern deep-water erosional scours along the northeast Atlantic margin. Geosphere 7(4):845–867. doi:10.1130/GES00611.1

  • Maki T, Kume A, Ura T (2011) Volumetric mapping of tubeworm colonies in Kagoshima Bay through autonomous robotic surveys. Deep Sea Res I 58:757–767. doi:10.1016/j.dsr.2011.05.006

    Article  Google Scholar 

  • Marine Technology Society (2015) ROV categories—summary. http://www.rov.org/rov_categories.cfm. Accessed 2 Aug 2016

  • Marsh L, Copley JT, Huvenne VAI, Tyler PA, the ISIS ROV Facility (2013) Getting the bigger picture: using precision remotely operated vehicle (ROV) videography to acquire high-definition mosaic images of newly discovered hydrothermal vents in the Southern Ocean. Deep Sea Res II 92:124–135. doi:10.1016/j.dsr2.2013.02.007

  • Masson DG, Huvenne VAI, de Stigter HC, Arzola RG, Le Bas TP (2011) Sedimentary processes in the middle Nazaré Canyon: the imporance of small-scale heterogeneity in defining the large-scale canyon environment. Deep Sea Res II 58:2369–2387. doi:10.1016/j.dsr2.2011.04.003

    Article  Google Scholar 

  • McPhail S (2009) Autosub6000: a deep diving long range AUV. J Bionic Eng 6(55–62). doi:10.1016/jS1672-6529(08)60095-5

  • McPhail S, Pebody M (2009) Range-only positioning of a deep-diving Autonomous Underwater Vehicle from a surface ship. IEEE J Oceanic Eng 34(4):669–677. doi:10.1109/JOE.2009.2030223

    Article  Google Scholar 

  • Milne PH (1983) Underwater acoustic positioning systems. Gulf Publishing Company, Houston, 284pp

    Google Scholar 

  • Morris KJ, Bett BJ, Durden JM, Huvenne VAI, Milligan R, Jones DOB, McPhail S, Robert K, Bailey DM, Ruhl HA (2014) A new method for ecological surveying of the abyss using Autonomous Underwater Vehicle photography. Limnol Oceanogr Methods 12:795–809. doi:10.4319/lom.201.12.795

    Article  Google Scholar 

  • OpenROV (2016) www.openrov.com. Accessed 2 Nov 2016

  • Pacunski RE, Paisson WA, Greene HG, Gunderson D (2008) Conducting visual surveys with a small ROV in shallow water. In: Reynolds JR, Greene HG (eds) Marine habitat mapping technology for Alaska. Alaska Sea Grant College Program, Fairbanks, pp 109–128

    Google Scholar 

  • Paull CK, Caress DW, Lundsten E, Gwiadza R, Anderson K, McGann M, Conrad J, Edwards B, Sumner EJ (2013) Anatomy of the La Jolla submarine canyon system; offshore southern California. Mar Geol 335:16–34. doi:10.1016/j.margeo.2012.10.003

    Article  Google Scholar 

  • Pennington JT, Blum M, Chavez FP (2016) Seawater sampling by an Autonomous Underwater Vehicle: “Gulper” sample validation for nitrate, chlorophyll, phytoplankton, and primary production. Limnol Oceanogr Methods 14:14–23. doi:10.1002/lom3.10065

    Article  Google Scholar 

  • Pizarro O, Singh H (2003) Toward large-area mosaicing for underwater scientific applications. IEEE J Oceanic Eng 28(4):651–672. doi:10.1109/JOE.2003.819154

    Article  Google Scholar 

  • Research Councils UK (2016) Autonomous Surface/sub-surface survey system. http://gtr.rcuk.ac.uk/projects?ref=102304. Accessed 04 Nov 2016

  • Ridao P, Carreras M, Hernandez E, Palomeras N (2007) Underwater telerobotics for collaborative research. In: Ferre Mea (ed) Advances in telerobotics, vol 31. Springer, Heidelberg, pp 347–359

    Google Scholar 

  • Rigaud (2007) Innovation and operation with robotized underwater systems. J Field Rob 24(6):449–459. doi:10.1002/rob.20195

    Article  Google Scholar 

  • Robert K, Jones DAB, Huvenne VAI (2014) Megafaunal distribution and biodiversity in a heterogeneous landscape: the iceberg-scoured Rockall Bank, NE Atlantic. Marine Ecology Progress Series, pp 67–88. doi:10.3354/meps10677

  • Rogers AD, Tyler PA, Connelly DP, Copley JT, James R, Larter RD, Linse K, Mills RA, Naveira Garabato A, Pancost RD, Pearce DA, Polunin NVC, German CR, Shank T, Boersch-Supan PH, Alker BJ, Aquilina A, Bennett SA, Clarke A, Dinley RJJ, Graham AGC, Green DRH, Hawkes JA, Hepburn L, Hilario A, Huvenne VAI, Marsh L, Ramirez-Llodra E, Reid WDK, Roterman CN, Sweeting CJ, Thatje S, Zwirglmaier K (2012) The discovery of new deep-sea hydrothermal vent communities in the southern Ocean and implications for biogeography. PLoS Biol 10(1):e1001234. doi:10.1371/journal.pbio.1001234

    Article  Google Scholar 

  • Roman C, Inglis G, Rutter J (2010) Application of structured light imaging for high resolution mapping of underwater archeological sites. In: Oceans 2010 IEEE. Sydney, 24–27 May, pp 1–9

    Google Scholar 

  • Roman C, Inglis G, Vaughn I, Smart C, Dansereau D, Bongiorno D, Johnson-Robertson M, Bryson M (2012) New tools and methods for precision seafloor mapping. Oceanography 25(1, supplement):42–45

    Google Scholar 

  • Rona P, Guida V, Scranton M, Gong D, Macelloni L, Pierdomenico M, Diercks A-R, Asper V, Haag S (2015) Hudson submarine canyon head offshore New York and New Jersey: a physical and geochemical investigation. Deep Sea Res II 121:213–232. doi:10.1016/j.dsr2.2015.07.019

    Article  Google Scholar 

  • Singh H, Roman C, Pizarro O, Eustice R, Can A (2007) Towards high-resolution imaging from underwater vehicles. Int J Robot Res 26(1):55–74. doi:10.1177/0278364907074473

    Article  Google Scholar 

  • Smart CJ, Roman C, Carey SN (2013) Detection of diffuse seafloor venting using structured light imaging. Geochem Geophys Geosyst 14(11):4743–4757. doi:10.1002/ggge.20280

    Article  Google Scholar 

  • Sumner EJ, Peakall J, Parsons DR, Wynn RB, Darby SE, Dorrell RM, McPhail SD, Perrett J, Webb A, White D (2013) First direct measurements of hydraulic jumps in an active submarine density current. Geophys Res Lett 40:5904–5908. doi:10.1002/2013GL057862

    Article  Google Scholar 

  • Tetlow S, Spours J (1999) Three-dimensional measurement of underwater work sites using structured laser light. Meas Sci Technol 10:1162–1167

    Article  Google Scholar 

  • Tubau X, Paull CK, Lastras G, Caress DW, Canals M, Lundsten E, Anderson K, Gwiazda R, Amblas D (2015) Submarine canyons of Santa Monica Bay, Southern California: variability in morphology and sedimentary processes. Mar Geol 365:61–79. doi:10.1016/j.margeo.2015.04.004

    Article  Google Scholar 

  • Wadhams P, Wilkinson JP, McPhail SD (2006) A new view of the underside of Arctic sea ice. Geophys Res Lett 33:L04501. doi:10.1029/2005GL025131

    Article  Google Scholar 

  • Wagner JKS, McEntee MH, Brothers LL, German CR, Kaiser CL, Yoerger DR, Van Dover CL (2013) Cold-seep habitat mapping: high-resolution spatial characterisation of the blake ridge diapir seep field. Deep Sea Res II 92:183–188. doi:10.1016/j.dsr2.2013.02.008

    Article  Google Scholar 

  • West ME, Syrmos VL (2006) Navigation of an Autonomous Underwater Vehicle (AUV) using robust SLAM. In: The 2006 IEEE conference on control applications. Munich, Germany, pp 1801–1806

    Google Scholar 

  • Williams SB, Pizarro O, Webster JM, Beaman RJ, Mahon I, Johnson-Robertson M, Bridge TCI (2010) Autonomous Underwater Vehicle-assisted surveying of drowned reefs on the shelf edge of the Great Barrier Reef. Aust J Field Rob 27(5):675–697. doi:10.1002/rob.20356

    Article  Google Scholar 

  • Wynn RB, Huvenne VAI, Le Bas TP, Murton BJ, Connelly DP, Bett BJ, Ruhl HA, Morris KJ, Peakall J, Parsons DR, Sumner EJ, Darby SE, Dorrell RM, Hunt JE (2014) Autonomous Underwater Vehicles (AUVs): their past, presence and future contributions to the advancement of marine geoscience. Mar Geol 352:451–468. doi:10.1016/j.margeo.2014.03.012

    Article  Google Scholar 

  • Yoerger DR, Bradley AM, Walden BB, Singh H, Bachmayer R (1998) Surveying a subsea lava flow using the Autonomous Benthic Explorer (ABE). Int J Syst Sci 29(10):1031–1044. doi:10.1080/0020772980829596

    Article  Google Scholar 

  • Yoerger DR, Kelley DS, Delaney JR (2000) Fine-scale three-dimensional mapping of a deep-sea hydrothermal vent site using the Jason ROV system. Int J Robot Res 19(11):1000–1014

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all captains, crews and scientific teams that have assisted with the collection of the different datasets discussed and presented. K. Robert and V. Huvenne are supported by the ERC Starting Grant CODEMAP (Grant no 258482), while the whole author team receives support from the NERC MAREMAP programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerle A.I. Huvenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Huvenne, V.A., Robert, K., Marsh, L., Lo Iacono, C., Le Bas, T., Wynn, R.B. (2018). ROVs and AUVs. In: Micallef, A., Krastel, S., Savini, A. (eds) Submarine Geomorphology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-57852-1_7

Download citation

Publish with us

Policies and ethics