Skip to main content

National Programmes: Geomorphological Mapping at Multiple Scales for Multiple Purposes

  • Chapter
  • First Online:

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

A better understanding of marine geomorphology is a common goal for seabed mapping programmes, with various mapping approaches, methodologies and challenges associated with systematically describing geomorphological features. To address these issues, and highlight the overall value of geomorphological mapping, a group of representatives from the seabed mapping programmes of the geological surveys of Norway, Ireland and the United Kingdom have formed a partnership to share their knowledge, expertise and technologies. Here we describe the first year of collaboration by outlining the background to and motivation for the groups’ national seabed mapping programmes, and presenting several case studies as well as tests to potentially adopt a harmonised classification scheme.

MIM partnership: MAREANO-INFOMAR-MAREMAP.

The original version of this chapter was revised: For detailed information please see Erratum. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-57852-1_28

This is a preview of subscription content, log in via an institution.

References

  • Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Petrol 60:160–172

    Article  Google Scholar 

  • Barlow NG, Boyce JM, Costard FM et al (2000) Standardizing the nomenclature of Martian impact crater ejecta morphologies. J Geophys Res 105(E11):26733–26738

    Article  Google Scholar 

  • Belderson RH, Kenyon NH, Stride AH et al (1972) Sonographs of the sea floor. A picture atlas, Elsevier, Holland

    Google Scholar 

  • Bellec V, Thorsnes T, Bøe R et al (2014) Mapping of bioclastic sediments—data, methods and confidence. NGU Rep 2014:006

    Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ et al (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol 31:21–50

    Article  Google Scholar 

  • Diesing M, Green SL, Stephens D et al (2015) Semi-automated mapping of rock in the English Channel and Celtic Sea. JNCC Report No. 569

    Google Scholar 

  • Dorschel B, Wheeler AJ, Monteys X et al (2010) Atlas of the deep-water seabed. Springer Science & Business Media, Ireland

    Google Scholar 

  • Dove D, Bradwell T, Carter G et al (2016) Seabed geomorphology: a two-part classification system. BGS open report OR/16/001

    Google Scholar 

  • Downie AL, Dove D, Westhead RK et al (2016) Semi-automated mapping of rock in the North Sea. JNCC Report No. 592

    Google Scholar 

  • Elvenes S (2013) Landscape mapping in MAREANO. NGU Report 2013.035

    Google Scholar 

  • Finkl CW, Benedet L, Andrews JL (2005) Interpretation of seabed geomorphology based on spatial analysis of high-density airborne laser bathymetry. J Coastal Res 21:501–514

    Article  Google Scholar 

  • Fosså JH, Mortensen PB, Furevik DM (2002) The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia 471:1–12

    Article  Google Scholar 

  • Gafeira J, Long D, Diaz-Doce D (2012) Semi-automated characterisation of seabed pockmarks in the central North Sea. Near Surf Geophys 10(4):303–314

    Google Scholar 

  • Greene HG, Yoklavich MM, Starr RM et al (1999) A classification scheme for deep seafloor habitats. Oceanol Acta 22(6):663–678

    Article  Google Scholar 

  • Harris PT, Baker EK (eds) (2011) Seafloor geomorphology as benthic habitat: GeoHab atlas of seafloor geomorphic features and benthic habitats. Elsevier

    Google Scholar 

  • Harris PT, Macmillan-Lawler M, Rupp J et al (2014) Geomorphology of the oceans. Mar Geol 352:4–24

    Article  Google Scholar 

  • Heezen BC, Tharp M (1977) World ocean floor panorama, New York. In full color, painted by H. Berann, Mercator Projection, scale 1:23,230,300, 1168 × 1930 mm

    Google Scholar 

  • Hillier JK, Watts AB (2007) Global distribution of seamounts from ship-track bathymetry data. Geophys Res Lett 34:L113304

    Article  Google Scholar 

  • Hughes Clarke JE, Mayer LA, Wells DE (1996) Shallow-water imaging multibeam sonars: a new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Mar Geophys Res 18(6):607–629

    Article  Google Scholar 

  • International Hydrographic Organization and Intergovernmental Oceanographic Commission (2013) Standardization of undersea feature name: guidelines, proposal form, terminology, Edition 4.1.0. IHO–IOC Publication B-6

    Google Scholar 

  • Jumars PA (1976) Deep-sea species diversity: does it have a characteristic scale. J Mar Res 34(2):217–246

    Google Scholar 

  • Levin LA, Sibuet M (2012) Understanding continental margin biodiversity: a new imperative. Ann Rev Mar Sci 4:79–112

    Article  Google Scholar 

  • Macmillan-Lawler M, Harris PT, Baker E et al (2013) What’s in and what’s not: using the new global seafloor geomorphic map to examine the representativeness of global marine protected areas. In: International marine protected areas congress (IMPAC3), Marseille, France, 21–27 Oct 2013

    Google Scholar 

  • Nanson GC, Croke JC (1992) A genetic classification of floodplains. Geomorphology 4(6):459–486

    Article  Google Scholar 

  • Robert K, Jones DO, Huvenne VA (2014) Megafaunal distribution and biodiversity in a heterogeneous landscape: the iceberg scoured Rockall Bank, NE Atlantic. Mar Ecol Prog Ser 501:67–88

    Article  Google Scholar 

  • Sacchetti F, Benetti S, Georgiopoulou A et al (2012) Deep-water geomorphology of the glaciated Irish margin from high-resolution marine geophysical data. Mar Geol 291:113–131

    Article  Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334):1956–1962

    Article  Google Scholar 

  • Thébaudeau B, Monteys X, McCarron S et al (2015) Seabed geomorphology of the porcupine bank, West of Ireland. J Maps 12(5):1–12

    Article  Google Scholar 

  • Thomson CW (1874) An account of the general results of the dredging cruises of H.M.SS. ‘Porcupine’ and ‘Lightning’ during the summers of 1868, 1869, and 1870, Under the Scientific Direction of Dr. Carpenter, J. Gwyn Jeffreys, and Dr. Wyville Thomson

    Google Scholar 

  • Wynn RB, Huvenne VAI, Le Bas TP et al (2014) Autonomous underwater vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Mar Geol 352:451–468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Guinan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Thorsnes, T. et al. (2018). National Programmes: Geomorphological Mapping at Multiple Scales for Multiple Purposes. In: Micallef, A., Krastel, S., Savini, A. (eds) Submarine Geomorphology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-57852-1_26

Download citation

Publish with us

Policies and ethics