Skip to main content

Oceanic Trenches

  • Chapter
  • First Online:
Submarine Geomorphology

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Although only recognized in the middle of the last century, oceanic trenches are among the most spectacular structural and morphological features in the deep oceans. Caused by the collision and subduction of tectonic plates and shaped by the interplay of tectonic and sedimentary processes, the morphology of oceanic trenches can be manifold. In this chapter we discriminate between sediment starved trenches, partly sediment filled trenches, and sediment flooded trenches. In sediments starved trenches the tectonic signature is usually well preserved everywhere in the trench, including at the outer slope, the depression, and the inner slope. In contrast, in sediment flooded trenches the outer slope and the trench depression usually correspond to a flat seafloor that results from the deposition of thick sedimentary sequences that overprint all fault scarps. Here, a tectonic signature is only found at the trench inner slope where accretion of trench sediments results in thrust faulting. The remarkable differences in trench morphologies underline that for a comprehensive understanding of the structural evolution of a convergent margin, detailed knowledge on the sedimentary and tectonic history of the adjacent oceanic trench is necessary.

The original version of this chapter was revised: For detailed information please see Erratum. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-57852-1_28

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334 doi:10.1016/S0012-821X(99)00173-9

  • Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chilean margin. Tectonics 16:489–503

    Google Scholar 

  • Bilek SL, Schwartz SY, DeShon HR (2003) Control of seafloor roughness on earthquake rupture behaviour. Geology 31:455–458

    Google Scholar 

  • Bodine JH, Watts AB (1979) On lithospheric flexure seaward of the Bonin and Mariana trenches. Earth Planet Sci Lett 43:132–148 doi:10.1016/0012-821X(79)90162-6

  • Craig TJ, Copley A (2014) An explanation for the age independence of oceanic elastic thickness estimates from flexural profiles at subduction zones, and implications for continental rheology. Earth Planet Sci Lett 392:207–216 doi:10.1016/j.epsl.2014.02.027

  • Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88:1153–1172 doi:10.1029/JB088iB02p01153

  • Dean SM, McNeill LC, Henstock TJ et al (2010) Contrasting décollement and prism properties over the Sumatra 2004–2005 earthquake rupture boundary. Science 329(5988):207–210 doi:10.1126/science.1189373

  • Flueh ER, Fisher MA, Bialas J et al (1998) New seismic images of the Cascadia subduction zone from cruise SO108—ORWELL. Tectonophysics 293:69–84

    Google Scholar 

  • Geersen J, Behrmann JH, Völker D et al (2011) Active tectonics of the South Chilean marine fore arc (35°S–40°S). Tectonics 30:TC3006 doi:10.1029/2010TC002777

  • Geersen J, McNeill L, Henstock TJ et al (2013) The 2004 Aceh-Andaman earthquake: early clay dehydration controls shallow seismic rupture. Geochem Geophys Geosyst 14(9):3315–3323 doi:10.1002/ggge.20193

  • Geersen J, Ranero CR, Barckhausen U et al (2015) Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area. Nat Commun 6:8267 doi:10.1038/ncomms9267

  • Hoffmann JAJ (1975) Atlas climatico de America del Sur. World Meteorol Organ

    Google Scholar 

  • Kelleher J, McCann W (1976) Buoyant zones, great earthquakes, and unstable boundaries of subduction. J Geophys Res 81:4885–4896

    Google Scholar 

  • Masson DG (1991) Fault patterns at outer trench walls. Mar Geophys Res 13:209–225 doi:10.1007/bf00369150

  • Melnick D, Echtler HP (2006) Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology 34:709–712 doi:10.1130/G22440.1

  • Müller RD, Sdrolias M, Gaina C et al (2008) Age, spreading rates and spreading symmetry of the world’s ocean crust. Geochem Geophys Geosyst 9:Q04006 doi:10.1029/2007GC001743

  • Pacheco JF, Sykes LR (1992) Seismic moment catalog for large shallow earthquakes from 1900 to 1989. Bull Seismol Soc 82:1306–1349

    Google Scholar 

  • Ranero CR, Villaseñor A, Phipps Morgan J et al (2005) Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochem Geophys Geosyst 6:Q12002 doi:10.1029/2005GC000997

  • Riddihough R (1984) Recent movements of the Juan de Fuca plate system. J Geophys Res Solid Earth 89:6980–6994 doi:10.1029/JB089iB08p06980

  • Ryan WBF, Carbotte SM, Coplan JO et al. (2009) Global multi‐resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014 doi:10.1029/2008gc002332

  • Scholl DW, Kirby SH, von Huene R et al (2015) Great (≥Mw8.0) megathrust earthquakes and the subduction of excess sediment and bathymetrically smooth seafloor. Geosphere 11:236–265 doi:10.1130/GES01079.1

  • Smith G, McNeill L, Henstock TJ et al (2012) The structure and fault activity of the Makran accretionary prism. J Geophys Res Solid Earth 117:B07407 doi:10.1029/2012jb009312

  • Vening Meinesz F (1929) Theory and practice of pendulum observations at sea. Nederlandse Commissie voor Geodesie, J. Waltman Jr., Delft, 95 pp

    Google Scholar 

  • Vening Meinesz FAV (1932) Gravity expeditions at sea 1923–1930. Vol. 1. The expeditions, the computations and the results. Nederlandse Commissie voor Geodesie, J. Waltman Jr., Delft, 109 pp

    Google Scholar 

  • Voelker D, Weinrebe W, Behrmann JH et al (2009) Mass wasting at the base of the south central Chilean continental margin: the Reloca Slide. Adv Geosci 22:155–167 doi:10.5194/adgeo-22-155-2009

  • Voelker D, Geersen J, Contreras-Reyes E et al (2012) Morphology and geology of the continental shelf and upper slope of southern Central Chile (33°S–43°S). International J of Earth Sci 1–23 doi:10.1007/s00531-012-0795-y

  • Voelker D, Geersen J, Contreras-Reyes E et al (2013) Sedimentary fill of the Chile Trench (32°S–46°S): volumetric distribution and causal factors. J Geol Soc 2012–119 doi:10.1144/jgs2012-119

  • von Huene R, Ranero CR (2003) Subduction erosion and basal friction along the sediment‐starved convergent margin off Antofagasta, Chile. J Geophys Res Solid Earth 108,2079 doi:10.1029/2001JB001569

  • Wang K, Bilek SL (2011) Do subducting seamounts generate or stop large earthquakes? Geology 39:819–822 doi:10.1130/G31856.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Geersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Geersen, J., Voelker, D., Behrmann, J.H. (2018). Oceanic Trenches. In: Micallef, A., Krastel, S., Savini, A. (eds) Submarine Geomorphology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-57852-1_21

Download citation

Publish with us

Policies and ethics