Skip to main content

Mid-ocean Ridges

  • Chapter
  • First Online:
Book cover Submarine Geomorphology

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Mid-ocean ridges illustrate well how volcanic, tectonic, hydrothermal and sedimentary processes sculpt geomorphology in the deep ocean. Because of their poor accessibility (lying 2700 m below sea level on average) and remote locations, the development and deployment of new technology has been important for the discovery and investigation of new features. In contrast with continental environments, erosion has only modestly affected these areas, so features can be well preserved, in particular, volcanic landforms. The eruption of lavas creates volcanic cones, ridges of hummocky flows, widespread low-relief flows and drain-back features in lava lakes. Plate-tectonic extension creates faults, many with moderate dips, as inferred from the earthquakes they produce. However, other faults with presently shallower dips are suggested by corrugated slip surfaces exposed at the seabed on slow-spreading ridges. Steep scarps, comprising fractured rock and in places weak lithologies such as serpentinite, are easily destabilized, producing landslides, talus cones and talus ramps. Seawaters penetrating the crust and heated by it produce hydrothermal springs, such as spectacular “black smokers”. Precipitation of sulphides from those exhaling fluids and their deposition produces smooth mats of sediment and chimneys that can collapse to contribute to the sedimentary deposits as talus. This combination of processes makes mid-ocean ridges fascinating environments to work on, representing how >60% of Earth’s solid (oceanic) crust has been created. Despite poor accessibility of such areas, researchers will likely continue to deploy new instruments as they are developed to reveal more details of mid-ocean ridge geomorphology and understanding of how it develops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Augustin N, Devey CW, van der Zwan FM, Feldens P, Tominaga M, Bantan R, Kwasnitschka T (2014) The transition from rifting to spreading in the Red Sea. Earth Planet Sci Lett 395:217–230

    Article  Google Scholar 

  • Ballard RD, van Andel TH (1977) Morphology and tectonics of the inner rift valley at lat 36°50′N on the Mid-Atlantic Ridge. Geol Soc Am Bull 88:507–530

    Article  Google Scholar 

  • Ballard RD, Holcomb RT, van Andel TH (1979) The Galapagos Rift at 86°W: 3. Sheet flows, collapse pits, and lava lakes of the Rift valley. J Geophys Res 84:5407–5422

    Article  Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geodesy 32:355–371

    Article  Google Scholar 

  • Bemis KG, Silver D, Xu G, Light R, Jackson D, Jones C, Ozer S, Liu L (2015) The path to COVIS: a review of acoustic imaging of hydrothermal flow regimes. Deep Sea Res II 121:159–176

    Article  Google Scholar 

  • Briais A, Rabinowicz M (2002) Temporal variations in the segmentation of slow to intermediate spreading mid-ocean ridges 1. Synoptic observations based on satellite altimetry data. J Geophys Res 107:Paper 2098. doi:2010.1029/2001JB000533

    Google Scholar 

  • Bryan WB, Humphris SE, Thompson G, Casey JF (1994) Comparative volcanology of small axial eruptive centers in the MARK area. J Geophys Res 99:2973–2984

    Article  Google Scholar 

  • Cann JR, Blachman DK, Smith DK, McAllister E, Janssen B, Mello S, Avgerinos E, Pascoe AR, Escartin J (1997) Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature 385:329–332

    Article  Google Scholar 

  • Cannat M, Mangeney A, Ondréas H, Fouquet Y, Normand A (2013) High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley. Geochem Geophys Geosyst 14. doi:10.1002/ggge.20056

  • Caress DW, Clague DA, Paduan JB, Martin JF, Dreyer BM, Chadwick WW, Denny A, Kelley DS (2012) Repeat 1 m resolution bathymetric surveys reveal April 2011 lava flows at axial seamount. Nature Geosc 5:483–488

    Article  Google Scholar 

  • Carlson RL (2010) How crack porosity and shape control seismic velocities in the upper oceanic crust: Modeling downhole logs from Holes 504B and 1256D. Geochem Geophys Geosyst 11:Paper Q04007. doi:04010.01029/02009GC002955

    Google Scholar 

  • Chadwick WW, Nooner SL, Butterfield DA, Lilley MD (2012) Seafloor deformation and forecasts of the April 2011 eruption at axial seamount. Nature Geosci 5:474–477

    Article  Google Scholar 

  • Collins JA, Blackman DK, Harris A, Carlson RL (2009) Seismic and drilling constraints on velocity structure and reflectivity near IODP Hole U1309D on the central dome of Atlantis Massif, Mid-Atlantic Ridge 30°N. Geochem Geophys Geosyst vol 10, article Q01010. doi:10.1029/2008GC002121

  • Crosby AG, McKenzie D (2009) An analysis of young ocean depth, gravity and global residual topography. Geophys J Int 178:1198–1219

    Article  Google Scholar 

  • Davis EE, Lister CRB (1977) Tectonic structures on the Juan de Fuca Ridge. Geol Soc Am Bull 88:346–363

    Article  Google Scholar 

  • Deschamps A, Grigné C, Saout ML, Soule SA, Allemand P, Lanoe BVV, Floc’h F (2014) Morphology and dynamics of inflated subaqueous basaltic lava flows. Geochem Geophys Geosyst 15. doi:10.1002/2014GC005274

  • Dziak RP, Haxel JH, Bohnenstiehl DR, Chadwick WW, Nooner SL, Fowler MJ, Matsumoto H, Butterfield DA (2012) Seismic precursors and magma ascent before the April 2011 eruption at axial seamount. Nature Geosci 5:478–482

    Article  Google Scholar 

  • Escartín J, Smith DK, Cann J, Schouten H, Langmuir CH, Escrig S (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455:790–794

    Article  Google Scholar 

  • Head JW, Wilson L, Smith DK (1996) Mid-ocean ridge eruptive vent morphology and substructure: Evidence for dike widths, eruption rates, and axial volcanic ridges. J Geophys Res 101:28265–28280

    Article  Google Scholar 

  • Heezen BC, Tharp M (1961) Physiographic diagram of the South Atlantic, the Caribbean, the Scotia Sea, and the eastern margin of the South Pacific Ocean. Geol Soc Am

    Google Scholar 

  • Huang PY, Solomon SC (1988) Centroid depths of mid-ocean ridge earthquakes: dependence on spreading rate. J Geophys Res 93:13445–13477

    Article  Google Scholar 

  • Karson JA (1998) Internal structure of oceanic lithosphere: a perspective from tectonic windows. In: Buck WR, Delaney PT, Karson JA, Lababrielle Y (eds) Faulting and magmatism at mid-ocean ridges. American Geophysical Union, Washington, D.C., pp 177–218

    Google Scholar 

  • Kelley DS, Delaney JR, Yoerger DR (2001) Geology and venting characteristics of the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge. Geology 29:959–962

    Article  Google Scholar 

  • Kong LSL, Detrick RS, Fox PJ, Mayer LA, Ryan WBF (1988) The morphology and tectonics of the MARK area from Sea Beam and SeaMARC I observations (Mid-Atlantic Ridge 23°N). Mar Geophys Res 10:59–90

    Article  Google Scholar 

  • Macdonald KC, Luyendyk BP (1977) Deep-tow studies of the structure of the Mid-Atlantic Ridge crest near latitude 37°N. Geol Soc Am Bull 88:621–636

    Article  Google Scholar 

  • Malinverno A (1991) Inverse square-root dependence of mid-ocean-ridge flank roughness on spreading rate. Nature 352:58–60

    Article  Google Scholar 

  • Malinverno A (1993) Transition between a valley and a high at the axis of mid-ocean ridges. Geology 21:639–642

    Article  Google Scholar 

  • Minshull TA, Brozena JM (1997) Gravity anomalies and flexure of the lithosphere at Ascension Island. Geophys J Int 131:347–360

    Article  Google Scholar 

  • Mitchell NC (1993) A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thickness with GLORIA sidescan sonar. J Geophys Res 98:22477–22493

    Article  Google Scholar 

  • Mitchell NC (1995) Diffusion transport model for pelagic sediments on the Mid-Atlantic Ridge. J Geophys Res 100(B10):19991–920009

    Article  Google Scholar 

  • Mitchell NC (2001) Random sequences of lithologies exposed on the Mid-Atlantic Ridge. J Geophys Res 106:26365–326378

    Article  Google Scholar 

  • Mitchell NC (2015) Submarine geomorphology. In: Sinclair H (ed) Reference module in earth systems and environmental sciences. Elsevier, Amsterdam

    Google Scholar 

  • Mitchell NC, Tivey MA, Gente P (2000) Slopes of mid-ocean ridge fault scarps from submersible observations. Earth Planet Sci Lett 183:543–555

    Article  Google Scholar 

  • Morris A, Gee JS, Pressling N, John BE, MacLeod CJ, Grimes CB, Searle RC (2009) Footwall rotation in an oceanic core complex quantified using reoriented Integrated Ocean Drilling Program core samples. Earth Planet Sci Lett 287:217–228

    Article  Google Scholar 

  • Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res 82:803–827

    Article  Google Scholar 

  • Perfit MR, Chadwick JWW (1998) Magmatism at mid-ocean ridges: constraints from volcanological and geochemical investigations. In: Buck WR, Delaney PT, Karson JA, Lagrabrielle Y (eds) Faulting and magmatism at mid-ocean ridges. American Geophysical Union, pp 59–115

    Google Scholar 

  • Ribe NM (1988) On the dynamics of mid-ocean ridges. J Geophys Res 93:429–436

    Article  Google Scholar 

  • Rundquist DV, Sobolev PO (2002) Seismicity of mid-oceanic ridges and its geodynamic implications: a review. Earth Sci Rev 58:143–161

    Article  Google Scholar 

  • Sandwell D, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346:65–67

    Article  Google Scholar 

  • Searle RC (2013) Mid-ocean ridges. Cambridge University Press, New York, p 318

    Book  Google Scholar 

  • Searle RC, Cowie PA, Mitchell NC, Allerton S, MacLeod CJ, Escartin J, Russell SM, Slootweg PA, Tanaka T (1998) Fault structure and detailed evolution of a slow spreading ridge segment: the Mid-Atlantic Ridge at 29°N. Earth Planet Sci Lett 154:167–183

    Article  Google Scholar 

  • Small C (1994) A global analysis of mid-ocean ridge axial topography. Geophys J Int 116:64–84

    Article  Google Scholar 

  • Smith DK, Cann JR (1999) Constructing the upper crust of the Mid-Atlantic Ridge: a reinterpretation based on the Puna Ridge, Kilauea Volcano. J Geophys Res 104:25379–25399

    Article  Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship soundings. Science 277:1956–1962

    Article  Google Scholar 

  • Smith DK, Escartin J, Cannat M, Tolstoy M, Fox CG, Bohnenstiehl DR, Bazin S (2003) Spatial and temporal distribution of seismicity along the northern Mid-Atlantic Ridge (15–35°N). J Geophys Res 108:2167. doi:10.1029/2002JB001964

    Google Scholar 

  • Soule SA, Fornari DJ, Perfit MR, Rubin KH (2007) New insights into mid-ocean ridge volcanic processes from the 2005–2006 eruption of the East Pacific Rise, 9°46′N–9°56′N. Geology 35:1079–1082

    Article  Google Scholar 

  • Soule SA, Fornari DJ, Perfit MR, Tivey MA, Ridley WI, Schouten H (2005) Channelized lava flows at the East Pacific Rise crest 9°–10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust. Geochem Geophys Geosyst 6:Q08005. doi:10.01029/02005GC000912

    Article  Google Scholar 

  • Stein RS, Briole P, Ruegg J-C, Tapponnier P, Gasse F (1991) Contemporary, Holocene and Quaternary deformation of the Asal Rift, Djibouti: implications for the mechanics of slow spreading ridges. J Geophys Res 96:21789–21806

    Article  Google Scholar 

  • Sykes LR (1967) Mechanism of earthquakes and nature of faulting on mid-ocean ridges. J Geophys Res 72:2131–2153

    Article  Google Scholar 

  • Tapponier P, Francheteau J (1978) Necking of the lithosphere and the mechanics of slowly accreting plate boundaries. J Geophys Res 83:3955–3970

    Article  Google Scholar 

  • Tucholke BE (1992) Massive submarine rockslide in the rift-valley wall of the Mid-Atlantic Ridge. Geology 20:129–132

    Article  Google Scholar 

  • Tucholke BE, Stewart WK, Kleinrock MC (1997) Long-term denudation of ocean crust in the central North Atlantic Ocean. Geology 25:171–174

    Article  Google Scholar 

  • Van Andel TH, Komar PD (1969) Ponded sediments of the Mid-Atlantic Ridge between 22° and 23° North latitude. Geol Soc Am Bull 80:1163–1190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil C. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mitchell, N.C. (2018). Mid-ocean Ridges. In: Micallef, A., Krastel, S., Savini, A. (eds) Submarine Geomorphology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-57852-1_18

Download citation

Publish with us

Policies and ethics