Skip to main content

Arbuscular Mycorrhizal Fungi in Redeeming Arsenic Toxicity in Plants

  • Chapter
  • First Online:

Abstract

Arsenic (As) contamination has transitioned into a global threat, hampering the survival of millions. Chemical fixation/remediation techniques have proved to be inadequate to reduce As toxicity. Use of arbuscular mycorrhizal fungi (AMF) in alleviation of As stress is a reliable and efficient approach. AMF have been reported to be present in As contaminated soils and are known to exert ameliorative role on detrimental effects of As. Although presence of As in soil affects AMF spore germination and colonization, they have been found to occur even in highly contaminated soils. AMF alleviate As toxicity by extending its extraradical mycelium beyond the depletion zone and help in the uptake of various nutrients increasing the biomass of the plant. AMF sequester As in its various fungal structures such as intraradical hyphae, arbuscules and vesicles preventing their translocation to aerial plant parts. Arsenate [As(V)] and inorganic P(Pi) compete for the same transport proteins in root plasma membrane. AMF could decrease As(V) uptake into the roots by suppressing the high affinity As(V)/(Pi) transporters. It thus enhances the P-uptake by circumventing the direct pathway and channelizing P-uptake by mycorrhizal pathway. AMF results in As stress tolerance in plants by enhancing P uptake, biotransformation of As(V), reduced As uptake, sequestration, protection from oxidative damage and improved physiology of plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsinic acid (DMA) uptake and tolerance in maize (Zea mays L.) Plant Soil 304:277–289

    Article  CAS  Google Scholar 

  • Abedin MJ, Cresser MS, Meharg AA et al (2002) Arsenic accumulation and metabolism in rice. Environ Sci Technol 36:962–968

    Article  CAS  PubMed  Google Scholar 

  • Acharya SK (2002) Arsenic contamination in groundwater affecting major parts of southern West Bengal and parts of western Chattisgarh: source and mobilization processes. Curr Sci 82:740–744

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Ahmed FRS, Killham K, Alexander I (2006) Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 258:33–41

    Article  CAS  Google Scholar 

  • Ahonen-Jonnarth U, van Vees PAW, Lundstrom US, Finlay RD (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol 146:557–567

    Article  CAS  Google Scholar 

  • Akashi K, Nishimura N, Ishida Y et al (2004) Potent hydroxyl radical scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun 323:72–78

    Article  CAS  PubMed  Google Scholar 

  • Alam MGM, Tokunaga S, Maekawa T (2001) Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere 43:1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Andrade SAL, Domingues AP, Mazzafera P (2015) Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress. Chemosphere 134:141–149

    Article  PubMed  CAS  Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut 147:609–614

    Article  CAS  PubMed  Google Scholar 

  • Avron M, Jagendorf A (1959) Evidence concerning the mechanism of adenosine triphosphate formation by spinach chloroplasts. J Biol Chem 234:967–972

    CAS  PubMed  Google Scholar 

  • Aziz I, Ayoob M, Paramjit K (2011) Response of Solanum melongena to inoculation with arbuscular mycorrhizal fungi under low and high phosphorus condition. Not Sci Biol 3:70–74

    CAS  Google Scholar 

  • Bai J, Lin X, Yin R et al (2008) The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Appl Soil Ecol 38:137–145

    Article  Google Scholar 

  • Bates MN, Smith AH, Cantor KP (1995) Case-control study of bladder cancer and arsenic in drinking water. Am J Epidemiol 141:523–530

    Article  CAS  PubMed  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD et al (2008) A subgroup of plant aquaporins facilitate the bidirectional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26. doi:10.1186/1741-7007-6-26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biro B, Posta K, Füzy A et al (2005) Mycorrhizal functioning as part of the survival mechanisms of barley (Hordeum vulgare L.) at long-term heavy metal stress. Acta Biol Szegedien 49:65–67

    Google Scholar 

  • Bleeker PM, Hakvoort HW, Bliek M et al (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptions to environmental stresses. Plant polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol Plant 99:385–390

    Google Scholar 

  • Bona E, Cattaneo C, Cesaro et al (2010) Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 10:3811–3834

    Article  CAS  PubMed  Google Scholar 

  • Bona E, Marsanoa F, Massaa N et al (2011) Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. J Proteome 7:1338–1350

    Article  CAS  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E et al (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey AM, Norton GJ, Deacon C et al (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM et al (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cebrian ME, Albores A, Aquilar M et al (1983) Chronic arsenic poisoning in the north of Mexico. Hum Toxicol 2:121–133

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Singh EJ, Das B et al (2008) Groundwater arsenic contamination in Manipur, one of the seven North-Eastern Hill states of India: a future danger. Environ Geol 56:381–390

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Murrill M et al (2013) Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. J Hazard Mater 262:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhu YG, Liu WJ et al (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol 165:91–97

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Xiao X, Zhu YG et al (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa (L.) Sci Total Environ 379:226–234

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Moore KL, Miller AJ et al (2015) The role of nodes in arsenic storage and distribution in rice. J Ext Bot 66:3717–3724

    Article  CAS  Google Scholar 

  • Chilvers GA, Harley JL (1980) Visualization of phosphate accumulation in beech mycorrhizas. New Phytol 4:319–326

    Article  Google Scholar 

  • Christie P, Li X, Chen B (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    Article  CAS  Google Scholar 

  • Christophersen HM, Smith FA, Smith SE (2009) Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway. New Phytol 184:962–974

    Article  CAS  PubMed  Google Scholar 

  • Christophersen HM, Smith FA, Smith SE (2012) Unraveling the influence of arbuscular mycorrhizal colonization on arsenic tolerance in medicago: Glomus mosseae is more effective than G. intraradices, associated with lower expression of root epidermal Pi transporter genes. Front Physiol 3:91. doi:10.3389/fphys.2012.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V et al (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:91–802

    Article  CAS  Google Scholar 

  • Coughlan AP, Dalpé Y, Lapointe L et al (2000) Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Can J For Res 30:1543–1554

    Article  Google Scholar 

  • Covey RP, Koch BL, Larsen HJ (1981) Influence of vesicular arbuscular mycorrhizae on the growth of apple and corn in low-phosphorus soil. Phytopathology 71:712–715

    Article  CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • da Silva GA, Trufem SFB, Júnior OJS et al (2005) Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. Mycorrhiza 15:47–53

    Article  PubMed  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH et al (2001) Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiol Ecol 36:203–209

    Article  CAS  PubMed  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK et al (2004) Arsenic concentrations in rice, vegetables and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    Article  CAS  PubMed  Google Scholar 

  • Del Val C, Barea JM, Azon Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal contaminated soils. Appl Environ Microbiol 65:718–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Zhu YG, Smith FA et al (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens L.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut 15:174–181

    Article  CAS  Google Scholar 

  • Drew EA, Murray RS, Smith SE et al (2003) Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil 251:105–114

    Article  CAS  Google Scholar 

  • EPA (1988) Special report on ingested inorganic arsenic: skin cancer; nutritional essentiality. EPA 625/3-87/013 U.S. Environmental Protection Agency, Risk Assessment Forum, Washington

    Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18

    Article  CAS  Google Scholar 

  • Fuentes A, Almonacid L, Ocampo JA et al (2016) Synergistic interactions between a saprophytic fungal consortium and Rhizophagus irregularis alleviate oxidative stress in plants grown in heavy metal contaminated soil. Plant Soil 407:355–366

    Article  CAS  Google Scholar 

  • Garg N, Kaur H (2013) Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) Millsp. Genotypes colonized by arbuscular mycorrhizal fungi. J Agron Crop Sci 9:31–42

    Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci Hortic 143:92–101

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 8:528–534

    Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathway of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1986) The physiology of improved phosphate nutrition in mycorrhizal plants. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 101–109

    Google Scholar 

  • Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporter associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698

    Article  CAS  PubMed  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez E, Solano R, Rubio V et al (2005) Phosphate transporter traffic facilitator1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Chavez Mdel C, Ortega-Larrocea MD, Carrillo-Gonzalez R et al (2011) Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biol 115:1197–1209

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chavez Mdel C, Miller B, Maldonado-Mendoza IE et al (2014) Localization and speciation of arsenic in Glomus intraradices by synchrotron radiation spectroscopic analysis. Fungal Biol 118:444–452

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chavez C, Harris PJ, Dodd J et al (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 15:163–171

    Article  Google Scholar 

  • Gordon Weeks R, Tong Y, Davies TGE et al (2003) Restricted spatial expression of a high-affinity phosphate transporter in potato roots. J Cell Sci 116:3135–3314

    Article  CAS  PubMed  Google Scholar 

  • Green NE, Graham SO, Schenck NC (1976) The influence of pH on the germination of vesicular-arbuscular mycorrhizal spores. Mycologia 68:929–934

    Article  Google Scholar 

  • Gregus Z, Roos G, Geerlings P et al (2009) Mechanism of thiol-supported arsenate reduction mediated by phosphorolytic–arsenolytic enzymes II. Enzymatic formation of arsenylated products susceptible for reduction to arsenite by thiols. Toxicol Sci 110:282–292

    Article  CAS  PubMed  Google Scholar 

  • Gulz PA, Gupta SK, Schulin R (2005) Arsenic accumulation of common plants from contaminated soils. Plant Soil 272:337–347

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic-phosphorous interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    Article  CAS  Google Scholar 

  • Gupta M, Sharma P, Sarin NB et al (2009) Differential response of arsenic stress in two varieties of Brassica juncea (L.) Chemosphere 74:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg A (2001) Copper and arsenic induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2012) Heavy metals in the environment: current status, toxic effects on plants and possible phytoremediation. In: Anjum NA, Pereira PA, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. Taylor and Francis/CRC Press, USA, pp 8–73

    Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–711

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hua L, Wu W, Liu Y et al (2009) Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ Sci Pollut Res 16:1–9

    Article  CAS  Google Scholar 

  • Huang JH, Matzner E (2006) Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochim Cosmochim Acta 70:2023–2033

    Article  CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–6

    Article  CAS  PubMed  Google Scholar 

  • Huysman KD, Frankenberger WT (1990) Arsenic resistant microorganisms isolated from agricultural drainage water and evaporation pond sediments. Water Air Soil Pollut 53:159–168

    Google Scholar 

  • IARC (1980) Monographs on the evaluation of the carcinogenic risk of chemicals to man: some metals and metallic compounds. International Agency for Research on Cancer, Lyon, pp 39–141

    Google Scholar 

  • IARC (1987) Monographs on the evaluation of the carcinogenic risk to humans: arsenic and arsenic compounds (Group 1). Supplement 7, International Agency for Research on Cancer, Lyon, pp 100–103

    Google Scholar 

  • Jakobsen I (1999) Transport of phosphorus and carbon in arbuscular mycorrhiza. Mycorrhiza: structure, function. Mol Biol Biotechnol, 2nd edn. Springer, Berlin

    Google Scholar 

  • Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72:1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Huang H, Sun GX et al (2012) Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environ Sci Technol 46:8090–8096

    Article  CAS  PubMed  Google Scholar 

  • Joiner EJ, Briones R, Leyval C (2000) Metal binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  CAS  PubMed  Google Scholar 

  • Karimi A, Khodaverdiloo H, Sepehri M et al (2011) Arbuscular mycorrhizal fungi and heavy metal contaminated soils. Af J Microbiol Res 5:1571–1576

    CAS  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA et al (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD et al (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230

    Article  CAS  PubMed  Google Scholar 

  • Lambkin DC, Alloway BJ (2003) Arsenate-induced phosphate release from soils and its effect on plant phosphorous. Water Air Soil Pollut 144:41–56

    Article  CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8

    Article  CAS  PubMed  Google Scholar 

  • Leung HM, Leung AOW, Ye ZH et al (2013) Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil. Chemosphere 92:1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Leyval C, Turnan K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Li Z, Beachner R, Mc Manama Z et al (2007) Sorption of arsenic by surfactant modified zeolite and kaolinite. Microporous Mesoporous Mater 105:291–297

    Article  CAS  Google Scholar 

  • Li RY, Ago Y, Liu WJ et al (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Wu C, Ye ZH et al (2011a) Uptake kinetics of different arsenic species in lowland and upland rice colonized with Glomus intraradices. J Hazard Mater 194:414–421

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye Z, Chan W et al (2011b) Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grownunder aerobic conditions? Environ Pollut 159:2537–2545

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen XW, Wong MH (2016) Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere 145:224–230

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Blaylock LA, Endre G et al (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhu YG, Chen BD et al (2005) Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata (L.) Mycorrhiza 15:187–192

    Article  CAS  PubMed  Google Scholar 

  • Lomax C, Liu WJ, Wu LY et al (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672

    Article  CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C et al (2001) A fern that hyperaccumulates arsenic. Nature 409:579–579

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahimairaja S, Bolan NS, Adriano DC et al (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  • Maia LC, Trufem SFB (1990) Vesicular-arbuscular mycorrhizal fungi in cultivated soils in Pernambuco State, Brazil. Rev Bras Bot 13:89–95

    Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH Jr (1992) The influence of chemical form and concentration of As on rice growth and tissue arsenic concentration. Plant Soil 139:175–183

    Article  CAS  Google Scholar 

  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 15:39–44

    Article  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus (L.) J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1994) Relationship between plant phosphorous status and the kinetics of arsenate influx in clones of Deschampsia cepitosa (L.) Beauv that differ in their tolerance to arsenate. Plant Soil 162:99–106

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E et al (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  PubMed  Google Scholar 

  • Mendez M, Maier MR (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  PubMed  Google Scholar 

  • Meng XG, Korfiatis GP, Bang S et al (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133:103–111

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD et al (2006) Phytochelatin synthesisand response of antioxidants during cadmium stress in Brassica monnieri (L.) Plant Physiol Biochem 44:25–37

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD et al (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum (L.) Aquat Toxicol 86:205–215

    Article  CAS  PubMed  Google Scholar 

  • Miteva E (2002) Accumulation and effect of arsenic on tomatoes. Commun Soil Sci Plant Anal 33:1917–1926

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT et al (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  CAS  PubMed  Google Scholar 

  • Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25:576–585

    Article  CAS  PubMed  Google Scholar 

  • Nagy ML, Johansen JR, Clair St LL et al (2005) Recovery patterns of microbiotic soil crusts, 70 years after arsenic contamination. J Arid Environ 63:304–323

    Article  Google Scholar 

  • NAS (2000) Arsenic: medical and biological effects of environmental pollutants. Arsenic Natl Acad Sci Washington, DC. doi: https://doi.org/10.17226/9003

  • Nordstrom DK (2002) Public health-worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  CAS  PubMed  Google Scholar 

  • Orlowska E, Ryszka P, Jurkiewicz A et al (2005) Effectiveness of arbuscular mycorrhizal fungal (AMF) strains in colonization of plants involved in phytostabilisation of zinc wastes. Geoderma 129:92–98

    Article  CAS  Google Scholar 

  • Patel KS, Shrivas K, Brandt R et al (2005) Arsenic contamination in water, soil, sediment and rice of central India. Environ Geochem Health 27:131–145

    Article  CAS  PubMed  Google Scholar 

  • Phillips DJH (1990) Arsenic in aquatic organisms – a review, emphasizing chemical speciation. Aquat Toxicol 16:151–186

    Article  CAS  Google Scholar 

  • Raab A, Williams PN, Meharg A et al (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Rahmaty R, Khara J (2008) Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. Turk J Biol 35:51–58

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Becerril F, Van Tuinen D, Martin-Laurent F et al (2005) Molecular changes in Pisum sativum ( L.) roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60

    Article  CAS  PubMed  Google Scholar 

  • Robson AD, Abbott LK (1989) The effect of soil acidity on microbial activity in soils. In: Robson AD (ed) Soil acidity and plant growth. Academic Press Australia, New South Wales, pp 139–165

    Chapter  Google Scholar 

  • Roy M, Mukherjee A, Mukherjee S et al (2014) Arsenic: an alarming global concern. Int J Curr Microbiol App Sci 3:34–47

    Google Scholar 

  • Sairam RK, Srivastava GC, Aggarwal S et al (2005) Differences in antioxidant activity in response to salinity stress intolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    Article  CAS  Google Scholar 

  • Santana AN, Ferreira AAP, Soriani HH et al (2015) Interaction between arbuscular mycorrhizal fungi and vermicompost on copper phytoremediation in a sandy soil. Appl Soil Ecol 96:172–182

    Article  Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in metal tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plant 101:477–482

    Article  CAS  Google Scholar 

  • Schenck NC, Siqueira JO (1987) Ecology of mycorrhizal fungi in temperate agroecosystems. In: Sylvia DM, Hung LL, Graham JH (eds) 7th North American conference on mycorrhizae in the next decade, Gainesville, pp 2–4

    Google Scholar 

  • Schneider J, Laboryb CRG, Rangela WM et al (2013) Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic contaminated soil. J Hazard Mater 262:1245–1258

    Article  CAS  PubMed  Google Scholar 

  • Schnepf A, Roose T, Schweiger P (2008) Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake: a modelling study. Plant Soil 312:85–99

    Article  CAS  Google Scholar 

  • Schnepf A, Leitner D, Klepsch S et al (2011) Modelling phosphorus dynamics in the soil-plant system. In: Bunemann EK, Obserson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer, Heidelberg, pp 113–133

    Chapter  Google Scholar 

  • Schreiber U, Bilger W, Hormann H et al (1998) Chlorophyll florescence as a diagnostic tool: basics and some aspects of practical relevance. In: Ragvendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge

    Google Scholar 

  • Schulz H, Härtling S, Tanneberg H (2008) The identification and quantification of arsenic induced phytochelatins comparison between plants with varying As sensitivities. Plant Soil 303:275–287

    Article  CAS  Google Scholar 

  • Shaibur MR, Kitajima N, Sugewara R et al (2008) Critical toxicity of arsenic and elemental composition of arsenic-induced chlorosis in hydroponic Sorghum. Water Air Soil Pollut 191:279–292

    Article  CAS  Google Scholar 

  • Sharma I, Singh R, Tripathi BN (2007) Biochemistry of Arsenic toxicity and tolerance in plants. Biochem Cell Arch 7:165–170

    CAS  Google Scholar 

  • Shen J, Hsu CM, Kang BK et al (2003) The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals 16:369–378

    Article  CAS  PubMed  Google Scholar 

  • Shen H, He Z, Yan H et al (2014) The fronds tonoplast quantitative proteomic analysis in arsenic hyperaccumulator Pteris vittata (L.) J Proteome 105:46–57

    Article  CAS  Google Scholar 

  • Sheng M, Tang M, Chen H et al (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Shin HS, Dewbre GR et al (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Shri M, Smita K, Debasis C (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Singh KS (2015) Groundwater arsenic contamination in the middle-gangetic plain, Bihar (India): The Danger Arrived. Int Res J Environ Sci 4:70–76

    CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava M et al (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 17:274–282

    Article  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solute. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (eds) (1997) Mycorrhizal symbiosis. Academic, San Diego, CA, pp 453–469

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego, CA

    Google Scholar 

  • Smith S, Smith F (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Hopenhayn-Rich C, Bates M et al (1992) Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Christophersen HM, Pope S et al (2010a) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21

    Article  CAS  Google Scholar 

  • Smith SE, Facelli E, Pope S et al (2010b) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Spagnoletti FN, Lavado SL (2015) The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plants. Agronomy 5:188–199

    Article  CAS  Google Scholar 

  • Spagnoletti FN, Balestrasse K, Lavado RS et al (2016) Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotox Environ Safe 133:47–56

    Article  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N et al (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95

    Google Scholar 

  • Stoeva N, Berova M, Zlatez Z (2004) Physiological response of maize to arsenic contamination. Biol Plant 47:449–452

    Article  Google Scholar 

  • Stoeva N, Berova M, Vassilev A et al (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–296

    Article  CAS  Google Scholar 

  • Sun Y, Zhang X, Wu Z et al (2016) The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. J Environ Sci 39:110–118

    Article  Google Scholar 

  • Takamatsu T, Aoki H, Yoshida T (1982) Determination of arsenate, arsenite, monomethylarsonate, and dimethylarsinate in soil polluted with arsenic. Soil Sci 133:239–246

    Article  CAS  Google Scholar 

  • Tchabi A, Coyne D, Hountondji F et al (2008) Arbuscular mycorrhizal fungal communities insub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18:181–195

    Article  PubMed  Google Scholar 

  • Tiwari M, Sharma D, Dwivedi S et al (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152

    Article  CAS  PubMed  Google Scholar 

  • Trotta A, Falaschi P, Cornara L et al (2006) Arbuscular mycorrhiza increases the arsenictranslocation factor in the arsenic hyperaccumulating fern Pteris vittata. Chemosphere 65:74–81

    Article  CAS  PubMed  Google Scholar 

  • Tseng YY, Yu CW, Liao VHC (2007) Caenorhabditis elegans expresses a functional ArsA. FEBS J 274:2566–2572

    Article  CAS  PubMed  Google Scholar 

  • Tu S, Ma LQ (2003) Effects of arsenate and phosphate on their accumulation by an arsenic hyperaccumulator Pteris vittata (L.) Plant Soil 249:373–382

    Article  CAS  Google Scholar 

  • Turnau K, Kottke I, Obserwinkler F (1993) Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. New Phytol 123:313–324

    Article  CAS  Google Scholar 

  • Ultra V, Tanaka S, Sakurai K et al (2007) Effects of arbuscular mycorrhizae and phosphorous application on arsenic toxicity in sunflower (Helianthus annus L.) and on the transformation of arsenic in the rhizosphere. Plant Soil 290:29–41

    Article  CAS  Google Scholar 

  • Vivas A, Vӧrӧs I, Biro B (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brievi bacillus sp. isolated from cadmium polluted soils under increasing cadmium levels. Environ Pollut 126:179–189

    Article  CAS  PubMed  Google Scholar 

  • Wang JR, Zhoa FJ, Meharg AA et al (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007) Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens – a field case. Environ Pollut 147:248–255

    Article  CAS  PubMed  Google Scholar 

  • Weissenhorn I, Leyval C, Belgy G et al (1995) Arbuscular mycorrhizal contribution to heavy-metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251

    CAS  Google Scholar 

  • Whitfield L, Richards AJ, Rimmer DL (2004) Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza 14:55–62

    Article  CAS  PubMed  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Wu FY, Ye ZH, Wu SC et al (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and non-metallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363–1378

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN, Liu W et al (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ 56:470–475

    CAS  Google Scholar 

  • Wu Z, Ren H, McGrath SP et al (2011a) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Van Geen A, Ahmed KM et al (2011b) Increase in diarrheal disease associated with arsenic mitigation in Bangladesh. PLoS One 6:29593. http://dx.doi.org/10.1371/journal.pone.0029593

    Article  CAS  Google Scholar 

  • Xia YS, Chen BD, Christie P et al (2007) Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic contaminated soil with added phosphorus. J Environ Sci 19:1245–1251

    Article  CAS  Google Scholar 

  • Xiang D, Verbruggen E, Hu Y et al (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytol 204:968–978

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Cai Y, O’Shea KE (2007) Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. Environ Sci Technol 41:5471–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu PL, Christie P, Liu Y et al (2008) The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environ Pollut 15:215–220

    Article  CAS  Google Scholar 

  • Yang J, Ajees AA, Salam A et al (2011) Genetic mapping of the interface between the ArsD metallochaperone and the ArsAATPase. Mol Microbiol 79:872–881

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Ajees AA, Yang J et al (2010) The 1.4 A crystal structure of the ArsD ar metallochaperone provides insights in to its interaction with the ArsA ATPase. Biochemistry 49:5206–5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh S, How SW, Lin CS (1968) Arsenical cancer of skin-histologic study with special reference to Bowen’s disease. Cancer 21:312–339

    Article  CAS  PubMed  Google Scholar 

  • Zhang SY, Rensing C, Zhu YG (2014) Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments. Environ Sci Technol 489:994–1000

    Article  CAS  Google Scholar 

  • Zhang X, Ren BH, Wu SL et al (2015) Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic contaminated soil. Chemosphere 119:224–230

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA et al (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA et al (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Sauvé R, Thannhauser TW (2010) Proteome changes induced by aluminium stress in tomato roots. J Exp Bot 60:1849–1857

    Article  Google Scholar 

  • Zhu YG, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic contaminated environments: from imagination to reality? Curr Opin Biotechnol 20:220–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YG, Smith FA, Smith SE (2003) Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza 13:93–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kapoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharma, S., Singh, N., Kapoor, R. (2017). Arbuscular Mycorrhizal Fungi in Redeeming Arsenic Toxicity in Plants. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-57849-1_7

Download citation

Publish with us

Policies and ethics