Skip to main content

Grid Generation Through Differential Systems

  • Chapter
  • First Online:
Grid Generation Methods

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 1282 Accesses

Abstract

Grid techniques based on the use of systems of partial differential equations to derive coordinate transformations are very popular in mapping approaches for generating grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amsden, A. A., & Hirt, C. W. (1973). A simple scheme for generating general curvilinear grids. Journal of Computational Physics, 11, 348–359.

    Article  ADS  MATH  Google Scholar 

  • Anderson, D. A. (1983). Adaptive grid methods for partial differential equations. In K. N. Ghia & U. Ghia (Eds.), Advances in Grid Generation (pp. 1–15). Houston: ASME.

    Google Scholar 

  • Anderson, D. A. (1987). Equidistribution schemes, Poisson generators, and adaptive grids. Applied Mathematics and Computation, 24, 211–227.

    Article  MathSciNet  MATH  Google Scholar 

  • Barfield, W. D. (1970). An optimal mesh generator for Lagrangian hydrodynamic calculations in two space dimensions. Journal of Computational Physics, 6, 417–429.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bell, J. B., Shubin, G. R., & Stephens, A. B. (1982). A segmentation approach to grid generation using biharmonics. Journal of Computational Physics, 47(3), 463–472.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bell, J. B., & Shubin, G. R. (1983). An adaptive grid finite-difference method for conservation laws. Journal of Computational Physics, 52, 569–591.

    Article  ADS  MATH  Google Scholar 

  • Chan, W. M., & Steger, L. G. (1992). Enhancement of a three-dimensional hyperbolic grid generation scheme. Applied Mathematics and Computation, 51(1), 181–205.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, K., Baines, M. J., & Sweby, P. K. (1993). On an adaptative time stepping strategy for solving nonlinear diffusion equations. Journal Computational of Physics, 105, 324–332.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chu, W. H. (1971). Development of a general finite difference approximation for a general domain. Journal of Computational Physics, 8, 392–408.

    Article  ADS  MATH  Google Scholar 

  • Cordova, J. Q., & Barth, T. J. (1988). Grid generation for general 2-D regions using hyperbolic equations, AIAA Paper 88-0520.

    Google Scholar 

  • Coyle, J. M., Flaherty, J. E., & Ludwig, R. (1986). On the stability of mesh equidistribution strategies for time-dependent partial differential equations. Journal of Computational Physics, 62, 26–39.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Crowley, W. P. (1962): An equipotential zoner on a quadrilateral mesh. Memo, Lawrence Livermore National Lab., 5 July 1962.

    Google Scholar 

  • Dannenhoffer, J. F. (1990). A comparison of adaptive-grid redistribution and embedding for steady transonic flows. AIAA Paper 90-1965.

    Google Scholar 

  • Dar’in, N., & Mazhukin, V. I. (1989). Mathematical modelling of non-stationary two-dimensional boundary-value problems on dynamic adaptive grids. Matematicheskoe Modelirovanie, 1(3), 29–30. (Russian).

    Google Scholar 

  • Dar’in, N., Mazhukin, V. I., & Samarskii, A. A. (1988). Finite-difference solution of gas dynamics equations using adaptive grids which are dynamically associated with the solution. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 28, 1210–1225. (Russian).

    ADS  MATH  Google Scholar 

  • Dorfi, E. A., & Drury, L. O’C. (1987). Simple adaptive grids for 1-D initial value problems. Journal of Computational Physics, 69, 175–195.

    Google Scholar 

  • Dwyer, H. A., Kee, R. J., & Sanders, B. R. (1980). Adaptive grid method for problems in fluid mechanics and heat transfer. AIAA Journal, 18(10), 1205–1212.

    Google Scholar 

  • Edwards, T. A. (1985). Noniterative three-dimensional grid generation using parabolic partial differential equations. AIAA Paper 85-0485.

    Google Scholar 

  • Eiseman, P. R. (1987). Adaptive grid generation. Computer Methods in Applied Mechanics and Engineering, 64, 321–376.

    Google Scholar 

  • Farrel, F. T., & Jones, L. E. (1996). Some non-homeomorphic harmonic homotopy equivalences. Bulletin of the London Mathematical Society, 28, 177–182.

    Google Scholar 

  • Godunov, S. K., & Prokopov, G. P. (1967). Calculation of conformal mappings in the construction of numerical grids. Journal of Computational Mathematics and Mathematical Physics, 7, 1031–1059. (Russian).

    Google Scholar 

  • Godunov, S. K., & Prokopov, G. P. (1972). On utilization of moving grids in gasdynamics computations. J. Vychisl. Matem. Matem. Phys. 12, 429–440 (Russian) [English transl.: USSR Computational Mathematics and Mathematical Physics 12 (1972), 182–195].

    Google Scholar 

  • Greenberg, J. B. (1985). A new self-adaptive grid method. AIAA Journal, 23, 317–320.

    Article  ADS  MATH  Google Scholar 

  • Hall, D. J., & Zingg, D. W. (1995). Viscous airfoil computations adaptive grid redistribution. AIAA Journal, 33(7), 1205–1210.

    Article  ADS  MATH  Google Scholar 

  • Harten, A., & Hyman, J. M. (1983). A self-adjusting grid for the computation of weak solutions of hyperbolic conservation laws. Journal of Computational Physics, 50, 235–269.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Haussling, H. J., & Coleman, R. M. (1981). A method for generation of orthogonal and nearly orthogonal boundary-fitted coordinate systems. Journal of Computational Physics, 43, 373–381.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hawken, D. F., Gottlieb, J. J., & Hansen, J. S. (1991). Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations. Journal of Computational Physics, 95, 254–302.

    Google Scholar 

  • Hindman, R. G., Kutler, P., & Anderson, D. (1981). Two-dimensional unsteady Euler equation solver for arbitrary shaped flow regions. AIAA Journal, 19(4), 424–431.

    Article  ADS  Google Scholar 

  • Hodge, J. K., Leone, S. A., & McCarry, R. L. (1987). Non-iterative parabolic grid generation for parabolized equations. AIAA Journal, 25(4), 542–549.

    Article  ADS  Google Scholar 

  • Jacquotte, O.-P. (1987). A mechanical model for a new grid generation method in computational fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 66, 323–338.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jeng, Y. N., & Shu, Y.-L. (1995). Grid combination method for hyperbolic grid solver in regions with enclosed boundaries. AIAA Journal, 33(6), 1152–1154.

    Article  ADS  MATH  Google Scholar 

  • Kim, H. J., & Thompson, J. F. (1990). Three-dimensional adaptive grid generation on a composite block grid. AIAA Journal, 28, 470–477.

    Article  ADS  MATH  Google Scholar 

  • Klopfer, G. H., & McRae, D. D. (1981). The nonlinear modified equation approach to analysing finite difference schemes. AIAA Paper 81-1029.

    Google Scholar 

  • Knupp, P. M. (1995). Mesh generation using vector-fields. Journal of Computational Physics, 119, 142–148.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Liao, G. (1991). On harmonic maps. In Castilio, J.E. (ed.),Mathematical Aspects of Numerical Grid Generation. Frontiers in Applied Mathematics, vol. 8 (pp. 123–130). SIAM, Philadelphia.

    Google Scholar 

  • Liao, G., & Anderson, D. (1992). A new approach to grid generation. Applicable Analysis, 44, 285–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Liao, G. G., Cai, X., Fleitas, D., Luo, X., Wang, J., & Xue, J. (2008). Optimal control approach to data aligment. Applied Mathematics Letters, 21, 898–905.

    Google Scholar 

  • Lin, K. L., & Shaw, H. J. (1991). Two-dimensional orthogoal grid generation techniques. Computers & Structures, 41(4), 569–585.

    Google Scholar 

  • Li, S., & Petzold, L. (1997). Moving mesh methods with upwinding schemes for time-dependent PDEs. Journal of Computational Physics, 131(2), 368–377.

    Article  ADS  MATH  Google Scholar 

  • Liseikin, V. D. (2004). A Computational Differential Geometry Approach to Grid Generation. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Liseikin, V. D. (2007). A Computational Differential Geometry Approach to Grid Generation (2nd ed.). Berlin: Springer.

    Google Scholar 

  • McNally, D. (1972). FORTRAN program for generating a two-dimensional orthogonal mesh between two arbitrary boundaries. NASA, TN D-6766.

    Google Scholar 

  • Miller, K. (1983). Alternate codes to control the nodes in the moving finite element method. In Adaptive Computing Methods for Partial Differential Equations. (pp. 165–182). Philadelphia: SIAM.

    Google Scholar 

  • Moser, J. (1965). The volume elements on a manifold. Transactions of American Mathematical Society, 120, 286.

    Google Scholar 

  • Nakamura, S. (1982). Marching grid generation using parabolic partial differential equations. Applied Mathematics and Computation, 10(11), 775–786.

    Article  MathSciNet  MATH  Google Scholar 

  • Nakamura, S., & Suzuki, M. (1987). Noniterative three-dimensional grid generation using a parabolic-hyperbolic hybrid scheme. AIAA Paper 87-0277.

    Google Scholar 

  • Noack, R. W. (1985). Inviscid flow field analysis of maneuvering hypersonic vehicles using the SCM formulation and parabolic grid generation. AIAA Paper 85-1682.

    Google Scholar 

  • Noack, R. W., & Anderson, D. A. (1990). Solution adaptive grid generation using parabolic partial differential equations. AIAA Journal, 28(6), 1016–1023.

    Article  ADS  MATH  Google Scholar 

  • Rai, M. M., & Anderson, D. A. (1981). Grid evolution in time asymptotic problems. Journal of Computational Physics, 43, 327–344.

    Article  ADS  MATH  Google Scholar 

  • Rai, M. M., & Anderson, D. A. (1982). Application of adaptive grids to fluid flow problems with asymptotic solution. AIAA Journal, 20, 496–502.

    Article  ADS  MATH  Google Scholar 

  • Ryskin, G., & Leal, L. G. (1983). Orthogonal mapping. Journal of Computational Physics, 50, 71–100.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Schwarz, W. (1986). Elliptic grid generation system for three-dimensional configurations using Poisson’s equation. In J. Hauser & C. Taylor (Eds.), Numerical Grid Generation in Computational Fluid Dynamics (pp. 341–351). Swansea: Pineridge.

    Google Scholar 

  • Semper, B., & Liao, G. (1995). A moving grid finite-element method using grid deformation. Numerical Methods for Partial Differential Equations, 11, 603–615.

    Article  MathSciNet  MATH  Google Scholar 

  • Slater, J. W., Liou, M. S., & Hindman, R. G. (1995). Approach for dynamic grids. AIAA Journal, 33(1), 63–68.

    Article  ADS  MATH  Google Scholar 

  • Soni, B. K. (1991). Grid optimization: a mixed approach. In A. S. Arcilla, J. Hauser, P. R. Eiseman, & J. F. Thompson (Eds.), Numerical Grid Generation in Computational Fluid Dynamics and Related Fields (p. 617). New York: North-Holland.

    Google Scholar 

  • Soni, B. K., Huddleston, D. K., Arabshahi, A., & Yu, B. (1993). A study of CFD algorithms applied to complete aircraft configurations. AIAA Paper 93-0784.

    Google Scholar 

  • Sparis, P. D. (1985). A method for generating boundary-orthogonal curvilinear coordinate systems using the biharmonic equation. Journal of Computational Physics, 61(3), 445–462.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sparis, P. N., & Karkanis, A. (1992). Boundary-orthogonal biharmonic grids via preconditioned gradient methods. AIAA Journal, 30(3), 671–678.

    Article  ADS  MATH  Google Scholar 

  • Spekreijse, S. P. (1995). Elliptic grid generation based on Laplace equations and algebraic transformations. Journal of Computational Physics, 118, 38–61.

    Article  ADS  MATH  Google Scholar 

  • Starius, G. (1977). Constructing orthogonal curvilinear meshes by solving initial value problems. Numerische Mathematlk, 28, 25–48.

    Google Scholar 

  • Steger, J. L., & Chaussee, D. S. (1980). Generation of body fitted coordinates using hyperbolic differential equations. SIAM Journal of Scientific Statistical Computing, 1(4), 431–437.

    Article  MathSciNet  MATH  Google Scholar 

  • Steger, J. L., & Rizk, Y. M. (1985). Generation of three-dimensional body-fitted coordinates using hyperbolic partial differential equations. NASA, TM 86753, June.

    Google Scholar 

  • Steger, J. L., & Sorenson, R. L. (1979). Automatic mesh-point clustering near a boundary in grid generation with elliptic partial differential equations. Journal of Computational Physics, 33, 405–410.

    Article  ADS  MathSciNet  Google Scholar 

  • Tai, C. H., Chiang, D. C., & Su, Y. P. (1996). Three-dimensional hyperbolic grid generation with inherent dissipation and Laplacian smoothing. AIAA Journal, 34(9), 1801–1806.

    Article  ADS  MATH  Google Scholar 

  • Tamamidis, P., & Assanis, D. N. (1991). Generation of orthogonal grids with control of spacing. Journal of Computational Physics, 94, 437–453.

    Article  ADS  MATH  Google Scholar 

  • Theodoropoulos, T., & Bergeles, G. C. (1989). A Laplacian equation method for numerical generation of boundary-fitted 3d orthogonal grids. Journal of Computational Physics, 82, 269–288.

    Article  ADS  MATH  Google Scholar 

  • Thomas, P. D., & Middlecoff, J. F. (1980). Direct control of the grid point distribution in meshes generated by elliptic equations. AIAA Journal, 18(6), 652–656.

    Article  ADS  MathSciNet  Google Scholar 

  • Thompson, J. F., Thames, F. C., & Mastin, C. W. (1974). Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. Journal of Computational Physics, 15, 299–319.

    Article  ADS  MATH  Google Scholar 

  • Thompson, J. F., Warsi, Z. U. A., & Mastin, C. W. (1985). Numerical Grid Generation: Foundations and Applications. New York: North-Holland.

    MATH  Google Scholar 

  • Tu, Y., & Thompson, J. F. (1991). Three-dimensional solution-adaptive grid generation on composite configurations. AIAA Journal, 29, 2025–2026.

    Article  ADS  MATH  Google Scholar 

  • Visbal, M., & Knight, D. (1982). Generation of orthogonal and nearly orthogonal coordinates with grid control near boundaries. AIAA Journal, 20(3), 305–306.

    Article  ADS  MATH  Google Scholar 

  • Wan, D., & Turek, S. (2006). Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows. Journal of Computational Physics, 22, 28–56.

    MathSciNet  MATH  Google Scholar 

  • Wan, D., & Turek, S. (2007). An efficient multigrid-FEM method for the simulation of solidliquid two phase flows. Journal of Computational Applied Mathematics, 203(2), 561–580.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Warsi, Z. U. A. (1982). Basic differential models for coordinate generation. In J. F. Thompson (Ed.), Numerical Grid Generation (pp. 41–78). New York: North-Holland.

    Google Scholar 

  • Wathen, A. J. (1990). Optimal moving grids for time-dependent partial differential equations. Journal of Computational Physics, 101, 51–54.

    Google Scholar 

  • White, A. B. (1979). On selection of equidistributing meshes for two-point boundary-value problems. SIAM Journal on Numerical Analysis, 16(3), 472–502.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • White, A. B. (1982). On the numerical solution of initial boundary-value problems in one space dimension. SIAM Journal on Numerical Analysis, 19, 683–697.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • White, A. B. (1990). Elliptic grid generation with orthogonality and spacing control on an arbitrary number of boundaries. AIAA Paper 90-1568

    Google Scholar 

  • Winslow, A. M. (1967). Equipotential zoning of two-dimensional meshes. Journal of Computational Physics, 1, 149–172.

    Google Scholar 

  • Zegeling, P. A. (1993). Moving-grid methods for time-dependent partial differential equations. CWI Tract 94, Amsterdam: Centrum voor Wiskund en Informatica.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir D. Liseikin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liseikin, V.D. (2017). Grid Generation Through Differential Systems . In: Grid Generation Methods. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-57846-0_6

Download citation

Publish with us

Policies and ethics