Modeling Situations in an Intelligent Connected Furniture Environment

  • Cedric Deffo SikounmoEmail author
  • Eric Benoit
  • Stephane Perrin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10257)


The Internet of Thing allows objects and services to interact with each other. The goal of this study is to recognize high level states of the rooms and more generally of the home. We want to be able to obtain intermediate states like “someone is in the kitchen” or “night mode”. In the specific case of home activity and state measurement, we consider that a set of furniture units is especially suitable for providing low level information. Recognizing and identifying house states or other high level information can be done using several methods. In this paper, we present an ontology based method. In the following, a situation is considered to be realized when the hypothesis which represents it are fulfilled. Using this approach, we show that multiple instances of situation context are distinguishable.


Indentification of situation Ontology Internet of Things Context Furniture 



This research is supported by the Universite Savoie Mont Blanc, the Association des Pays de Savoie and Miliboo Corporation.


  1. 1.
    Workshops Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007), Omaha, Nebraska, USA, 28–31 October 2007. IEEE Computer Society (2007)Google Scholar
  2. 2.
    Anagnostopoulos, C., Ntarladimas, Y., Hadjiefthymiades, S.: Situational computing: an innovative architecture with imprecise reasoning. J. Syst. Softw. 80(12), 1993–2014 (2007)CrossRefGoogle Scholar
  3. 3.
    Attard, J., Scerri, S., Rivera, I., Handschuh, S.: Ontology-based situation recognition for context-aware systems. In: I-SEMANTICS 2013–9th International Conference on Semantic Systems, ISEM 2013, Graz, Austria, 4–6 September 2013, pp. 113–120 (2013)Google Scholar
  4. 4.
    Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6(2), 161–180 (2010)CrossRefGoogle Scholar
  5. 5.
    Boytsov, A., Zaslavsky, A., Eryilmaz, E., Albayrak, S.: Situation awareness meets ontologies: a context spaces case study. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) CONTEXT 2015. LNCS (LNAI), vol. 9405, pp. 3–17. Springer, Cham (2015). doi: 10.1007/978-3-319-25591-0_1 CrossRefGoogle Scholar
  6. 6.
    Chen, H., Perich, F., Finin, T.W., Joshi, A.: SOUPA: standard ontology for ubiquitous and pervasive applications. In: 1st Annual International Conference on Mobile and Ubiquitous Systems (MobiQuitous 2004), Networking and Services, Cambridge, MA, USA, pp. 258–267, 22–25 August 2004Google Scholar
  7. 7.
    Choudhury, T., Quigley, A.J., Strang, T., Suginuma, K. (eds.): LoCA 2009. LNCS, vol. 5561. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Compton, M., Henson, C.A., Neuhaus, H., Lefort, L., Sheth, A.P.: A survey of the semantic specification of sensors. In: Proceedings of the 2nd International Workshop on Semantic Sensor Networks (SSN 2009), Collocated with the 8th International Semantic Web Conference (ISWC-2009), Washington DC, USA, 26 October 2009, pp. 17–32 (2009)Google Scholar
  9. 9.
    Dapoigny, R., Barlatier, P.: Formalizing context for domain ontologies in Coq. In: Brézillon, P., Gonzalez, A.J. (eds.) Context in Computing - A Cross-Disciplinary Approach for Modeling the Real World, pp. 437–454. Springer, New York (2014)Google Scholar
  10. 10.
    Sikounmo, C.D., Benoit, E., Perrin, S.: States measurement in a context of intelligent connected furnitures. In: 2016 Joint IMEKO TC1-TC7-TC13 Symposium “Metrology Across the Sciences: Wishful Thinking?”. To be Published in IoP Science, Berkeley Evaluation and Assessment Research Center, Berkeley, USA, August 2016Google Scholar
  11. 11.
    Devlin, K.: Situation theory and situation semantics. In: Logic and the Modalities in the Twentieth Century, pp. 601–664 (2006)Google Scholar
  12. 12.
    Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  13. 13.
    Gonzalez, A.J., Ahlers, R.: Context-based representation of intelligent behavior in training simulations. Trans. Soc. Comput. Simul. 15(4), 153–166 (1998)Google Scholar
  14. 14.
    Gruber, T.: Ontology. In: Liu, L., Tamer Özsu, M. (eds.) Encyclopedia of Database Systems, pp. 1963–1965. Springer, New York (2009)Google Scholar
  15. 15.
    Gu, T., Pung, H.K., Zhang, D.: A service-oriented middleware for building context-aware services. J. Netw. Comput. Appl. 28(1), 1–18 (2005)CrossRefGoogle Scholar
  16. 16.
    Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An ontology-based context model in intelligent environments. In: Proceedings of Communication Networks and Distributed Systems Modeling and Simulation Conference, pp. 270–275 (2004)Google Scholar
  17. 17.
    Guermah, H., Fissaa, T., Hafiddi, H., Nassar, M., Kriouile, A.: An ontology oriented architecture for context aware services adaptation (2014). CoRR abs/1404.3280Google Scholar
  18. 18.
    Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a context-aware application. Wirel. Netw. 8(2–3), 187–197 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive computing systems. In: Mattern, F., Naghshineh, M. (eds.) Pervasive 2002. LNCS, vol. 2414, pp. 167–180. Springer, Heidelberg (2002). doi: 10.1007/3-540-45866-2_14 CrossRefGoogle Scholar
  20. 20.
    Henricksen, K., Indulska, J., Rakotonirainy, A.: Generating context management infrastructure from high-level context models. In: 4th International Conference on Mobile Data Management (MDM) - Industrial Track, pp. 1–6 (2003)Google Scholar
  21. 21.
    Kindberg, T., Barton, J.: A web-based nomadic computing system. Comput. Netw. 35(4), 443–456 (2001)CrossRefGoogle Scholar
  22. 22.
    McCowan, I., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., Zhang, D.: Automatic analysis of multimodal group actions in meetings. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 305–317 (2005)CrossRefGoogle Scholar
  23. 23.
    Wang, X., Zhang, D., Gu, T., Pung, H.K.: Ontology based context modeling and reasoning using OWL. In: 2nd IEEE Conference on Pervasive Computing and Communications Workshops (PerCom 2004 Workshops), Orlando, FL, USA, pp. 18–22, 14–17 March 2004Google Scholar
  24. 24.
    Wu, H., Siegel, M., Ablay, S.: Sensor fusion for context understanding. In: Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, IMTC/2002, vol. 1, pp. 13–17 (2002)Google Scholar
  25. 25.
    Ye, J., Coyle, L., Dobson, S.A., Nixon, P.: Representing and manipulating situation hierarchies using situation lattices. Rev. d’Intell. Artif. 22(5), 647–667 (2008)Google Scholar
  26. 26.
    Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cedric Deffo Sikounmo
    • 1
    Email author
  • Eric Benoit
    • 1
  • Stephane Perrin
    • 1
  1. 1.Laboratoire d’Informatique, Systèmes, Traitement de l’Information et de la Connaissance (LISTIC)Université Savoie Mont BlancAnnecy-Le-VieuxFrance

Personalised recommendations