Skip to main content

Understanding Selenium Biogeochemistry in Engineered Ecosystems: Transformation and Analytical Methods

  • Chapter
  • First Online:
Bioremediation of Selenium Contaminated Wastewater

Abstract

Selenium is used extensively in many industries, and it is necessary for human nutrition. On the other hand, it is also toxic at slightly elevated concentrations. With the advent of industrialisation, selenium concentrations in the environment due to anthropogenic activities have increased. Treatment of selenium-laden wastewaters and bioremediation are of increasing importance for counteracting contamination. Developing an effective treatment process requires the identification of all the selenium chemical species and their concentrations in engineered settings. This chapter collates the available techniques for identifying and quantifying various selenium species in gas, liquid, and solid phases, including X-ray absorption spectroscopy, electron microscopy, and liquid/gas chromatography. This chapter also throws light on isotopic fractionation and sequential extraction methods used to study the behaviour of selenium. Prior to the discussion of analytical methods, this chapter discusses selenium mineralogy and biochemistry. Finally, the chapter concludes by discussing potential future analytical techniques that will further improve our understanding of selenium biogeochemistry in engineered bioprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiho H, Ito S, Matsuda H (2010) Effect of oxidizing agents on selenate formation in a wet FGD. Fuel 89(9):2490–2495

    Article  CAS  Google Scholar 

  • Anan Y, Nakajima G, Ogra Y (2015) Complementary use of LC-ICP-MS and LC-ESI-Q-TOF-MS for selenium speciation. Anal Sci 31(6):561–564

    Article  CAS  Google Scholar 

  • Bañuelos GS (2001) The green technology of selenium phytoremediation. BioFactors 14:255–260

    Article  Google Scholar 

  • Bañuelos GS, Ajwa HA, Mackey B, Wu L, Cook C, Akohoue S, Zambruzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26(3):639

    Article  Google Scholar 

  • Bingham PA, Connelly AJ, Cassingham NJ, Hyatt NC (2011) Oxidation state and local environment of selenium in alkali borosilicate glasses for radioactive waste immobilisation. J Non-Cryst Solids 357(14):2726–2734

    Article  CAS  Google Scholar 

  • Buchs B, Evangelou MWH, Winkel LHE, Lenz M (2013) Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol 47(5):2401–2407

    Article  CAS  Google Scholar 

  • Butterman WC, Brown RDJ (2004) Mineral commodity profile—selenium. Department of the interior, U.S. Geological Survey, USA

    Google Scholar 

  • Caroli S (1996) Element speciation in bioinorganic chemistry. Wiley, New York

    Google Scholar 

  • Casiot C, Szpunar J, Lobinski R, Potin-Gautier M (1999) Sample preparation and HPLC separation approaches to speciation analysis of selenium in yeast by ICP-MS. J Anal At Spectrom 14(4):645–650

    Article  CAS  Google Scholar 

  • Cornelis R, Caruso J, Crews H, Heumann K (eds) (2003) Handbook of elemental speciation: techniques and methodology. Wiley, Chichester, pp 7–12

    Google Scholar 

  • Debieux CM, Dridge EJ, Mueller CM, Splatt P, Paszkiewicz K, Knight I, Florance H, Love J, Titball RW, Lewis RJ, Richardson DJ, Butler CS (2011) A bacterial process for selenium nanosphere assembly. PNAS 108:13480–13485

    Article  CAS  Google Scholar 

  • Dessì P, Jain R, Singh S, Seder-Colomina M, van Hullebusch ED, Rene ER, Ahammad SZ, Carucci A, Lens PNL (2016) Effect of temperature on selenium removal from wastewater by UASB reactors. Water Res 94:146–154

    Article  Google Scholar 

  • Dhillon KS, Dhillon SK (2003) Distribution and management of seleniferous soils. Adv Agron 79:119–184

    Article  CAS  Google Scholar 

  • Dobias J, Suvorova EI, Bernier-latmani R (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22(19):195605

    Article  CAS  Google Scholar 

  • Ellis AS, Johnson TM, Herbel MJ, Bullen TD (2003) Stable isotope fractionation of selenium by natural microbial consortia. Chem Geol 195(1–4):119–129

    Article  CAS  Google Scholar 

  • Espinosa-Ortiz EJ, Gonzalez-Gil G, Saikaly PE, van Hullebusch ED, Lens PNL (2015) Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 99(5):2405–2418

    Article  CAS  Google Scholar 

  • Farges, F. and Wilke, M. (2015) Planetary, Geological and Environmental Sciences, in XAS and XES: Theory and Applications (J. A. van Bokhoven and C. Lamberti, eds.), J. Willey and sons Ltd

    Google Scholar 

  • Fellowes JW, Pattrick RAD, Lloyd JR, Charnock JM, Coker VS, Mosselmans JFW, Weng T-C, Pearce CI (2013) Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors. Nanotechnology 24(14):145603

    Article  CAS  Google Scholar 

  • Fernández-Martínez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8(1):81–110

    Article  Google Scholar 

  • Fordyce F (2007) Selenium geochemistry and health. Ambio 36(1):94–97

    Article  CAS  Google Scholar 

  • Gates B, Mayers B, Cattle B, Xia Y (2002) Synthesis and characterization of uniform nanowires of trigonal Selenium. Adv Func Mater 12(3):219–227

    Article  CAS  Google Scholar 

  • Green FB, Lundquist TJ, Quinn NWT, Zarate MA, Zubieta IX, Oswald WJ (2003) Selenium and nitrate removal from agricultural drainage using the AIWPS® technology. Water Sci Technol 48(2):299–305

    CAS  Google Scholar 

  • Hamilton SJ (2003) Review of residue-based selenium toxicity thresholds for freshwater fish. Ecotoxicol Environ Saf 56(2):201–210

    Article  CAS  Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326(1–3):1–31

    CAS  Google Scholar 

  • Herbel MJ, Johnson TM, Oremland RS, Bullen TD (2000) Fractionation of selenium isotopes during bacterial respiratory reduction of selenium oxyanions. Geochim Cosmochim Acta 64(21):3701–3709

    Article  CAS  Google Scholar 

  • Herbel MJ, Blum JS, Oremland RS, Borglin SE (2003) Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire se-oxyanions. Geomicrobiol J 20(6):587–602

    Article  CAS  Google Scholar 

  • Higgins T, Givens S, Sandy T (2008) FGD wastewater treatment still gas a ways to go. Power engineering. http://www.power-eng.com/articles/print/volume-112/issue-1/features/fgd-wastewater-treatment-still-has-a-ways-to-go.html. Accessed 23 Jan 2017

  • Huang J, Passeport E, Terry N (2012) Development of a constructed wetland water treatment system for selenium removal: use of mesocosms to evaluate design parameters. Environ Sci 46:12021–12029

    Article  CAS  Google Scholar 

  • Huang JC, Suárez MC, Yang SI, Lin ZQ, Terry N (2013) Development of a constructed wetland water treatment system for selenium removal: incorporation of an algal treatment component. Environ Sci Technol 47(18):10518–10525

    CAS  Google Scholar 

  • Jain R (2015) Biogenic nanoparticles of elemental selenium: synthesis, characterization and releveance in wastewater treatment. PhD thesis, UNESCO-IHE, Delft, The Netherlands. https://www.crcpress.com/Biogenic-Nanoparticles-of-Elemental-Selenium-Synthesis-Characterization/Jain/p/book/9781138028319

  • Jain R, Gonzalez-Gil G, Singh V, van Hullebusch ED, Farges F, Lens PNL (2014) Biogenic selenium nanoparticles: production, characterization and challenges. In: Kumar A, Govil NJ (eds) Nanobiotechnology. Studium Press LLC, USA, pp 361–390

    Google Scholar 

  • Jain R, Jordan N, Schild D, van Hullebusch ED, Weiss S, Franzen C, Farges F, Hübner R, Lens PNL (2015a) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:855–863

    Article  CAS  Google Scholar 

  • Jain R, Jordan N, Weiss S, Foerstendorf H, Heim K, Kacker R, Hübner R, Kramer H, van Hullebusch ED, Farges F, Lens PNL (2015b) Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol 49:1713–1720

    Article  CAS  Google Scholar 

  • Jain R, Seder-Colomina M, Jordan N, Dessi P, Cosmidis J, van Hullebusch ED, Weiss S, Farges F, Lens PNL (2015c) Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. J Hazard Mater 295:193–200

    Article  CAS  Google Scholar 

  • Jain R, Dominic D, Jordan N, Rene ER, Weiss S, van Hullebusch ED, Hübner R, Lens PNL (2016) Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chem Eng J 284:917–925

    Article  CAS  Google Scholar 

  • Johnson TM (2004) A review of mass-dependent fractionation of selenium isotopes and implications for other heavy stable isotopes. Chem Geol 204(3–4):201–214

    Article  CAS  Google Scholar 

  • Johnson TM, Bullen TD (2003) Selenium isotope fractionation during reduction by Fe (II)-Fe(III) hydroxide-sulfate (green rust). Geochim Cosmochim Acta 67(3):413–419

    Article  CAS  Google Scholar 

  • Johnson TM, Herbel MJ, Bullen TD, Zawislanski PT (1999) Selenium isotope ratios as indicators of selenium sources and oxyanion reduction. Geochim Cosmochim Acta 63(18):2775–2783

    Article  CAS  Google Scholar 

  • Kagami T, Narita T, Kuroda M, Notaguchi E, Yamashita M, Sei K, Soda S, Ike M (2013) Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Res 47(3):1361–1368

    Article  CAS  Google Scholar 

  • Kuroda M, Notaguchi E, Sato A, Yoshioka M, Hasegawa A, Kagami T, Narita T, Yamashita M, Sei K, Soda S, Ike M (2011) Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. J Biosci Bioeng 112(3):259–264

    Article  CAS  Google Scholar 

  • Larsen EH, Hansen M, Fan T, Vahl M (2001) Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. J Anal At Spectrom 16(12):1403–1408

    Article  CAS  Google Scholar 

  • Lenz M (2008) Biological selenium removal from wastewaters. PhD thesis, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407(12):3620–3633

    Article  CAS  Google Scholar 

  • Lenz M, Smit M, Binder P, van Aelst AC, Lens PNL (2008a) Biological alkylation and colloid formation of selenium in methanogenic UASB reactors. J Environ Qual 37(5):1691–1700

    Article  CAS  Google Scholar 

  • Lenz M, van Hullebusch ED, Farges F, Nikitenko S, Borca CN, Grolimund D, Lens PNL (2008b) Selenium speciation assessed by X-ray absorption spectroscopy of sequentially extracted anaerobic biofilms. Environ Sci Technol 42(20):7587–7593

    Article  CAS  Google Scholar 

  • Lenz M, Kolvenbach B, Gygax B, Moes S, Corvini PFX (2011) Shedding light on selenium biomineralization: proteins associated with bionanominerals. Appl Environ Microbiol 77(13):4676–4680

    Article  CAS  Google Scholar 

  • Lenz M, Floor GH, Winkel LHE, Roman-Ross G, Corvini PFX (2012) Online preconcentration-IC-ICP-MS for selenium quantification and speciation at ultratraces. Environ Sci Technol 46(21):11988–11994

    Article  CAS  Google Scholar 

  • Lin ZQ, Cervinka V, Pickering IJ, Zayed A, Terry N (2002) Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization. Water Res 36(12):3150–3160

    Article  CAS  Google Scholar 

  • Macfarquhar MJK, Broussard DL, Burk RF, Dunn JR, Green AL (2011) Acute Selenium Toxicity Associated With a Dietary Supplement. Arch Int Med 170(3):256–261

    Article  Google Scholar 

  • Mal J, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016a) Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge. Biores Technol 206:1–8

    Article  CAS  Google Scholar 

  • Mal J, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016b) Metal Chalcogenide quantum dots: biotechnological synthesis and applications. RSC Adv, 41477–41495.

    Google Scholar 

  • Malisa EP (2001) The behaviour of selenium in geological processes. Environ Geochem Health 23(2):137–158

    Article  CAS  Google Scholar 

  • Mitchell K, Couture RM, Johnson TM, Mason PRD, Van Cappellen P (2013) Selenium sorption and isotope fractionation: iron(III) oxides versus iron(II) sulfides. Chem Geol 342:21–28

    Article  CAS  Google Scholar 

  • Mosher BW, Duce RA, Prospero JM, Savoie DL (1987) Atmospheric selenium: geographical distribution and ocean to atmospheric flux in the Pacific. J Geophys Res 92:13277–13287

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015a) Selenium biomineralization for biotechnological applications. Trends Biotechnol 33(6):323–330

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015b) Ecology and biotechnology of selenium-respiring bacteria. MMBR 79(1):61–80

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 336:134–139

    Article  Google Scholar 

  • Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70(1):52–60

    Article  CAS  Google Scholar 

  • Petrov PK, Charters JW, Wallschläger D (2012) Identification and determination of selenosulfate and selenocyanate in flue gas desulfurization waters. Environ Sci Technol 46(3):1716–1723

    Article  CAS  Google Scholar 

  • Pouget EM, Bomans PH, Goos JACM, Frederik PM, de With G, Sommerdijk NAJM (2009) The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 329:1455–1458

    Article  Google Scholar 

  • Presser TS (1994) The Kesterson effect. Environ Manage 18(3):437–454

    Article  Google Scholar 

  • Presser TS, Luoma SN (2010) A methodology for ecosystem-scale modeling of selenium. Integr Environ Assess Manage 6(4):685–710

    Article  CAS  Google Scholar 

  • Qin H-B, Zhu J-M, Liang L, Wang M-S, Su H (2013) The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environ Int 52:66–74

    Article  CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241

    Article  CAS  Google Scholar 

  • Schilling K, Johnson TM, Wilcke W (2011) Isotope fractionation of selenium during fungal biomethylation by alternaria alternata. Environ Sci Technol 45(7):2670–2676

    Article  CAS  Google Scholar 

  • Shrimpton HK, Blowes DW, Ptacek CJ (2015) Fractionation of selenium during selenate reduction by granular zerovalent iron. Environ Sci Technol 49(19):11688–11696

    Article  CAS  Google Scholar 

  • Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016) Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnol Adv 34(5):886–907

    Article  CAS  Google Scholar 

  • Templeton DM, Ariese F, Cornelis R, Danielsson LG, Muntau H, van Leeuwen HP, Lobinski R (2000) Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000) Prepared. Pure Appl Chem 72(8):1453–1470

    Google Scholar 

  • van Hullebusch E, Rossano S, Farges F, Lenz M, Labanowski J, Lagarde P, Flank A-M, Lens P (2009) Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur dynamics in soil organic matter. J Phys Conf Ser 190:12184

    Article  Google Scholar 

  • Vriens B, Ammann Aa, Hagendorfer H, Lenz M, Berg M, Winkel LHE (2014a) Quantification of methylated selenium, sulfur, and arsenic in the environment. PLoS ONE 9(7):1–9

    Google Scholar 

  • Vriens B, Lenz M, Charlet L, Berg M, Winkel LHE (2014b) Natural wetland emissions of methylated trace elements. Nat Commun 5:3035

    Article  Google Scholar 

  • Vriens B, Mathis M, Winkel LHE, Berg M (2015) Quantification of volatile-alkylated selenium and sulfur in complex aqueous media using solid-phase microextraction. J Chromatogr A 1407:11–20

    Article  CAS  Google Scholar 

  • Wen H, Carignan J (2007) Reviews on atmospheric selenium: Emissions, speciation and fate. Atmos Environ 41(34):7151–7165

    Article  CAS  Google Scholar 

  • Winkel L, Feldmann J, Meharg AA (2010) Quantitative and qualitative trapping of volatile methylated selenium species entrained through nitric acid. Environ Sci Technol 44(1):382–387

    Article  CAS  Google Scholar 

  • Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L (2012) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46(2):571–579

    Article  CAS  Google Scholar 

  • Witzke T, de Wit F, Kolitsch U, Blaß G (2015) Mineralogy of the Burning Anna I Coal Mine Dump, Alsdorf, Germany. In: Stracher GB, Prakash A, Sokol EV (eds) Coal and peat fires: a global perspective, vol 3: Case studies—coal fires. Elsevier, pp 203–240

    Google Scholar 

  • Wright MT, Parker DR, Amrhein C (2003) Critical evaluation of the ability of sequential extraction procedures to quantify discrete forms of selenium in sediments and soils. Environ Sci Technol 37(20):4709–4716

    Article  CAS  Google Scholar 

  • Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57(3):257–269

    Article  CAS  Google Scholar 

  • Yang SI, George GN, Lawrence JR, Kaminskyj SGW, Dynes JJ, Lai B, Pickering IJ (2016) Multispecies biofilms transform selenium oxyanions into elemental selenium particles: studies using combined synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy. Environ Sci Technol 50(19):10343–10350

    Article  CAS  Google Scholar 

  • Zhang Y, Zahir ZA, Frankenberger WJ (2003) Fate of colloidal-particulate elemental selenium in aquatic systems. J Environ Qual 33(2):559–564

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding from the Earth System Science and Environmental Management (ESSEM) COST Action ES1302 European Network on Ecological Functions of Trace Metals in Anaerobic Biotechnologies to support this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. van Hullebusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jain, R., van Hullebusch, E.D., Lenz, M., Farges, F. (2017). Understanding Selenium Biogeochemistry in Engineered Ecosystems: Transformation and Analytical Methods. In: van Hullebusch, E. (eds) Bioremediation of Selenium Contaminated Wastewater. Springer, Cham. https://doi.org/10.1007/978-3-319-57831-6_2

Download citation

Publish with us

Policies and ethics