• Miguel ArandaEmail author
  • Gonzalo López-Nicolás
  • Carlos Sagüés
Part of the Advances in Industrial Control book series (AIC)


We begin the book with an introduction of the topics that it addresses. The background on vision-based multirobot control and the arguments that motivate its study are provided in this chapter. In this discussion, we consider separately three topics pertaining to the overall thematic framework of the monograph, namely computer vision, visual control, and multirobot systems. We also cover possible applications of the research advances and technologies that are presented. Finally, the contributions described in the book are summarized, and an outline of its contents is provided.


Mobile Robot Multiagent System Vision Sensor Motion Capture System Visual Servoing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kim SH, Roh C, Kang SC, Park MY (2007) Outdoor navigation of a mobile robot using differential GPS and curb detection. In: IEEE international conference on robotics and automation, pp 3414–3419Google Scholar
  2. 2.
    Michael N, Mellinger D, Lindsey Q, Kumar V (2010) The GRASP multiple micro-UAV testbed. IEEE Robot Autom Mag 17(3):56–65CrossRefGoogle Scholar
  3. 3.
    Urcola P, Montano L (2011) Adapting robot team behavior from interaction with a group of people. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2887–2894Google Scholar
  4. 4.
    Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE Trans Cybern 43(5):1318–1334CrossRefGoogle Scholar
  5. 5.
    Grosso E, Tistarelli M (1995) Active/dynamic stereo vision. IEEE Trans Pattern Anal Mach Intell 17(9):868–879CrossRefGoogle Scholar
  6. 6.
    Stockman G, Shapiro LG (2001) Computer vision. Prentice Hall, Englewood CliffsGoogle Scholar
  7. 7.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  8. 8.
    Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  9. 9.
    Ma Y, Soatto S, Kosecka J, Sastry S (2003) An invitation to 3D vision. Springer, BerlinzbMATHGoogle Scholar
  10. 10.
    Faugeras O, Luong QT, Papadopoulou T (2001) The geometry of multiple images. MIT Press, CambridgezbMATHGoogle Scholar
  11. 11.
    Åström K, Oskarsson M (2000) Solutions and ambiguities of the structure and motion problem for 1D retinal vision. J Math Imag Vis 12(2):121–135MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Quan L (2001) Two-way ambiguity in 2D projective reconstruction from three uncalibrated 1D images. IEEE Trans Pattern Anal Mach Intell 23(2):212–216CrossRefGoogle Scholar
  13. 13.
    Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395MathSciNetCrossRefGoogle Scholar
  14. 14.
    Corke PI (1996) Visual control of robots: high-performance visual servoing. Wiley, New YorkGoogle Scholar
  15. 15.
    Hutchinson S, Hager GD, Corke PI (1996) A tutorial on visual servo control. IEEE Trans Robot Autom 12(5):651–670CrossRefGoogle Scholar
  16. 16.
    Chaumette F, Hutchinson S (2006) Visual servo control, part I: basic approaches. IEEE Robot Autom Mag 13(4):82–90CrossRefGoogle Scholar
  17. 17.
    Chaumette F, Hutchinson S (2007) Visual servo control, part II: advanced approaches. IEEE Robot Autom Mag 14(1):109–118CrossRefGoogle Scholar
  18. 18.
    Corke PI (2011) Robotics, vision and control. Springer, BerlinCrossRefzbMATHGoogle Scholar
  19. 19.
    López-Nicolás G, Mezouar Y (2014) Visual control of mobile robots. Robot Auton Syst 62(11):1611–1612CrossRefGoogle Scholar
  20. 20.
    Espiau B, Chaumette F, Rives P (1992) A new approach to visual servoing in robotics. IEEE Trans Robot Autom 8(3):313–326CrossRefGoogle Scholar
  21. 21.
    Malis E, Chaumette F, Boudet S (1999) 2 1/2 D visual servoing. IEEE Trans Robot Autom 15(2):238–250CrossRefGoogle Scholar
  22. 22.
    Andreff N, Espiau B, Horaud R (2000) Visual servoing from lines. In: IEEE international conference on robotics and automation, pp 2070–2075Google Scholar
  23. 23.
    Corke PI, Hutchinson SA (2001) A new partitioned approach to image-based visual servo control. IEEE Trans Robot Autom 17(4):507–515CrossRefGoogle Scholar
  24. 24.
    Mezouar Y, Chaumette F (2002) Path planning for robust image-based control. IEEE Trans Robot Autom 18(4):534–549CrossRefGoogle Scholar
  25. 25.
    Tahri O, Chaumette F (2005) Point-based and region-based image moments for visual servoing of planar objects. IEEE Trans Robot 21(6):1116–1127CrossRefGoogle Scholar
  26. 26.
    Mariottini GL, Prattichizzo D (2008) Image-based visual servoing with central catadioptric camera. Int J Robot Res 27(1):41–57CrossRefGoogle Scholar
  27. 27.
    Becerra HM, López-Nicolás G, Sagüés C (2010) Omnidirectional visual control of mobile robots based on the 1D trifocal tensor. Robot Auton Syst 58(6):796–808CrossRefGoogle Scholar
  28. 28.
    López-Nicolás G, Gans NR, Bhattacharya S, Sagüés C, Guerrero JJ, Hutchinson S (2010) Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. IEEE Trans Syst Man Cybern B Cybern 40(4):1115–1127CrossRefGoogle Scholar
  29. 29.
    Tahri O, Mezouar Y, Chaumette F, Corke PI (2010) Decoupled image-based visual servoing for cameras obeying the unified projection model. IEEE Trans Rob 26(4):684–697CrossRefGoogle Scholar
  30. 30.
    Silveira G, Malis E (2012) Direct visual servoing: vision-based estimation and control using only nonmetric information. IEEE Trans Rob 28(4):974–980CrossRefGoogle Scholar
  31. 31.
    Geyer C, Daniilidis K (2000) A unifying theory for central panoramic systems and practical implications. In: European conference on computer vision, pp 445–461Google Scholar
  32. 32.
    Dudek G, Jenkin MRM, Milios E, Wilkes D (1996) A taxonomy for multi-agent robotics. Auton Robot 3(4):375–397CrossRefGoogle Scholar
  33. 33.
    Parker LE (2003) Current research in multirobot systems. Artif Life Robot 7(2–3):1–5CrossRefGoogle Scholar
  34. 34.
    Becker A, Onyuksel C, Bretl T, McLurkin J (2014) Controlling many differential-drive robots with uniform control inputs. Int J Robot Res 33(13):1626–1644CrossRefGoogle Scholar
  35. 35.
    Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand-robot swarm. Science 345(6198):795–799CrossRefGoogle Scholar
  36. 36.
    Dunbar WB, Caveney DS (2012) Distributed receding horizon control of vehicle platoons: stability and string stability. IEEE Trans Autom Control 57(3):620–633MathSciNetCrossRefGoogle Scholar
  37. 37.
    Cortés J, Martínez S, Karatas T, Bullo F (2004) Coverage control for mobile sensing networks. IEEE Trans Robot Autom 20(2):243–255CrossRefGoogle Scholar
  38. 38.
    Bullo F, Cortés J, Martínez S (2009) Distributed control of robotic networks. Princeton University Press, PrincetonCrossRefzbMATHGoogle Scholar
  39. 39.
    Schwager M, Julian B, Angermann M, Rus D (2011) Eyes in the sky: decentralized control for the deployment of robotic camera networks. Proc IEEE 99(9):1541–1561CrossRefGoogle Scholar
  40. 40.
    Montijano E, Sagüés C (2015) Distributed consensus with visual perception in multi-robot systems. Springer, BerlinCrossRefzbMATHGoogle Scholar
  41. 41.
    Tanner HG, Loizou SG, Kyriakopoulos KJ (2003) Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Trans Robot Autom 19(1):53–64CrossRefGoogle Scholar
  42. 42.
    Lindsey Q, Mellinger D, Kumar V (2012) Construction with quadrotor teams. Auton Robot 33(3):323–336CrossRefGoogle Scholar
  43. 43.
    Burgard W, Moors M, Stachniss C, Schneider FE (2005) Coordinated multi-robot exploration. IEEE Trans Rob 21(3):376–386CrossRefGoogle Scholar
  44. 44.
    Cunningham A, Wurm KM, Burgard W, Dellaert F (2012) Fully distributed scalable smoothing and mapping with robust multi-robot data association. In: IEEE international conference on robotics and automation, pp 1093–1100Google Scholar
  45. 45.
    Murphy RR, Dreger KL, Newsome S, Rodocker J, Slaughter B, Smith R, Steimle E, Kimura T, Makabe K, Kon K, Mizumoto H, Hatayama M, Matsuno F, Tadokoro S, Kawase O (2012) Marine heterogeneous multirobot systems at the great Eastern Japan Tsunami recovery. Journal of Field Robotics 29(5):819–831CrossRefGoogle Scholar
  46. 46.
    Michael N, Shen S, Mohta K, Mulgaonkar Y, Kumar V, Nagatani K, Okada Y, Kiribayashi S, Otake K, Yoshida K, Ohno K, Takeuchi E, Tadokoro S (2012) Collaborative mapping of an earthquake-damaged building via ground and aerial robots. J Field Robot 29(5):832–841CrossRefGoogle Scholar
  47. 47.
    Bhattacharya S, Ghrist R, Kumar V (2014) Multi-robot coverage and exploration on Riemannian manifolds with boundary. Int J Robot Res 33(1):113–137CrossRefGoogle Scholar
  48. 48.
    Alonso-Mora J, Breitenmoser A, Rufli M, Siegwart R, Beardsley P (2012) Image and animation display with multiple mobile robots. Int J Robot Res 31(6):753–773CrossRefGoogle Scholar
  49. 49.
    Balch T, Arkin RC (1999) Behavior-based formation control for multi-robot teams. IEEE Trans Robot Autom 14(6):926–939CrossRefGoogle Scholar
  50. 50.
    Desai JP, Ostrowski JP, Kumar V (2001) Modeling and control of formations of nonholonomic mobile robots. IEEE Trans Robot Autom 17(6):905–908CrossRefGoogle Scholar
  51. 51.
    Lin Z, Francis B, Maggiore M (2005) Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans Autom Control 50(1):121–127MathSciNetCrossRefGoogle Scholar
  52. 52.
    Mesbahi M, Egerstedt M (2010) Graph theoretic methods in multiagent networks. Princeton University Press, PrincetonCrossRefzbMATHGoogle Scholar
  53. 53.
    Lin J, Morse AS, Anderson BDO (2007) The multi-agent rendezvous problem. Part 1: the synchronous case. SIAM J Control Optim 46(6):2096–2119MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Yu J, LaValle SM, Liberzon D (2012) Rendezvous without coordinates. IEEE Trans Autom Control 57(2):421–434MathSciNetCrossRefGoogle Scholar
  55. 55.
    Cortés J, Martínez S, Bullo F (2006) Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans Autom Control 51(8):1289–1298MathSciNetCrossRefGoogle Scholar
  56. 56.
    Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput Graph 21(4):25–34CrossRefGoogle Scholar
  57. 57.
    Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001MathSciNetCrossRefGoogle Scholar
  58. 58.
    Zavlanos MM, Tanner HG, Jadbabaie A, Pappas GJ (2009) Hybrid control for connectivity preserving flocking. IEEE Trans Autom Control 54(12):2869–2875MathSciNetCrossRefGoogle Scholar
  59. 59.
    Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233CrossRefGoogle Scholar
  60. 60.
    Martínez S, Cortés J, Bullo F (2007) Motion coordination with distributed information. IEEE Control Syst Mag 27(4):75–88CrossRefGoogle Scholar
  61. 61.
    Ren W, Beard R (2008) Distributed consensus in multi-vehicle cooperative control. Springer, BerlinCrossRefzbMATHGoogle Scholar
  62. 62.
    Tardioli D, Mosteo AR, Riazuelo L, Villarroel JL, Montano L (2010) Enforcing network connectivity in robot team missions. Int J Robot Res 29(4):460–480CrossRefGoogle Scholar
  63. 63.
    Zavlanos MM, Egerstedt MB, Pappas GJ (2011) Graph-theoretic connectivity control of mobile robot networks. Proc IEEE 99(9):1525–1540CrossRefGoogle Scholar
  64. 64.
    Zelazo D, Franchi A, Allgower F, Bulthoff H, Giordano PR (2012) Rigidity maintenance control for multi-robot systems. In: Robotics: science and systemsGoogle Scholar
  65. 65.
    Nedic A, Ozdaglar A (2010) Convergence rate for consensus with delays. J Global Optim 47(3):437–456MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Panagou D, Kumar V (2014) Cooperative visibility maintenance for leader-follower formations in obstacle environments. IEEE Trans Rob 30(4):831–844CrossRefGoogle Scholar
  67. 67.
    Michael N, Zavlanos MM, Kumar V, Pappas GJ (2008) Distributed multi-robot task assignment and formation control. In: IEEE international conference on robotics and automation, pp 128–133Google Scholar
  68. 68.
    Aranda M, López-Nicolás G, Sagüés C (2010) Omnidirectional visual homing using the 1D trifocal tensor. In: IEEE international conference on robotics and automation, pp 2444–2450Google Scholar
  69. 69.
    Aranda M, López-Nicolás G, Sagüés C (2013) Angle-based homing from a reference image set using the 1D trifocal tensor. Auton Robot 34(1–2):73–91CrossRefGoogle Scholar
  70. 70.
    Aranda M, López-Nicolás G, Sagüés C (2013) Sinusoidal input-based visual control for nonholonomic vehicles. Robotica 31(5):811–823CrossRefGoogle Scholar
  71. 71.
    Aranda M, López-Nicolás G, Sagüés C (2012) Planar motion estimation from 1D homographies. In: International conference on control, automation, robotics and vision, pp 329–334Google Scholar
  72. 72.
    Aranda M, López-Nicolás G, Sagüés C (2013) Controlling multiple robots through multiple 1D homographies. In: IEEE international conference on systems, man and cybernetics, pp 589–594Google Scholar
  73. 73.
    López-Nicolás G, Aranda M, Mezouar Y, Sagüés C (2012) Visual control for multirobot organized rendezvous. IEEE Trans Sys Man Cybern Part B Cybern 42(4):1155–1168CrossRefGoogle Scholar
  74. 74.
    Aranda M, Mezouar Y, López-Nicolás G, Sagüés C (2013) Partially distributed multirobot control with multiple cameras. In: American control conference, pp 6323–6329Google Scholar
  75. 75.
    Aranda M, López-Nicolás G, Sagüés C, Mezouar Y (2015) Formation control of mobile robots using multiple aerial cameras. IEEE Trans Rob 31(4):1064–1071CrossRefGoogle Scholar
  76. 76.
    Aranda M, López-Nicolás G, Sagüés C, Zavlanos MM (2014) Three-dimensional multirobot formation control for target enclosing. In: IEEE/RSJ international conference on intelligent robots and systems, pp 357–362Google Scholar
  77. 77.
    Aranda M, López-Nicolás G, Sagüés C, Zavlanos MM (2015) Coordinate-free formation stabilization based on relative position measurements. Automatica 57:11–20MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Aranda M, López-Nicolás G, Sagüés C, Zavlanos MM (2016) Distributed formation stabilization using relative position measurements in local coordinates. IEEE Trans Autom Control 61(12):3925–3935MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Miguel Aranda
    • 1
    Email author
  • Gonzalo López-Nicolás
    • 2
  • Carlos Sagüés
    • 2
  1. 1.ISPRSIGMA Clermont, Institut PascalAubièreFrance
  2. 2.Instituto de Investigación en Ingeniería de AragónUniversidad de ZaragozaZaragozaSpain

Personalised recommendations