Skip to main content

Abstract

We begin the book with an introduction of the topics that it addresses. The background on vision-based multirobot control and the arguments that motivate its study are provided in this chapter. In this discussion, we consider separately three topics pertaining to the overall thematic framework of the monograph, namely computer vision, visual control, and multirobot systems. We also cover possible applications of the research advances and technologies that are presented. Finally, the contributions described in the book are summarized, and an outline of its contents is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim SH, Roh C, Kang SC, Park MY (2007) Outdoor navigation of a mobile robot using differential GPS and curb detection. In: IEEE international conference on robotics and automation, pp 3414–3419

    Google Scholar 

  2. Michael N, Mellinger D, Lindsey Q, Kumar V (2010) The GRASP multiple micro-UAV testbed. IEEE Robot Autom Mag 17(3):56–65

    Article  Google Scholar 

  3. Urcola P, Montano L (2011) Adapting robot team behavior from interaction with a group of people. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2887–2894

    Google Scholar 

  4. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE Trans Cybern 43(5):1318–1334

    Article  Google Scholar 

  5. Grosso E, Tistarelli M (1995) Active/dynamic stereo vision. IEEE Trans Pattern Anal Mach Intell 17(9):868–879

    Article  Google Scholar 

  6. Stockman G, Shapiro LG (2001) Computer vision. Prentice Hall, Englewood Cliffs

    Google Scholar 

  7. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  8. Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  9. Ma Y, Soatto S, Kosecka J, Sastry S (2003) An invitation to 3D vision. Springer, Berlin

    MATH  Google Scholar 

  10. Faugeras O, Luong QT, Papadopoulou T (2001) The geometry of multiple images. MIT Press, Cambridge

    MATH  Google Scholar 

  11. Åström K, Oskarsson M (2000) Solutions and ambiguities of the structure and motion problem for 1D retinal vision. J Math Imag Vis 12(2):121–135

    Article  MathSciNet  MATH  Google Scholar 

  12. Quan L (2001) Two-way ambiguity in 2D projective reconstruction from three uncalibrated 1D images. IEEE Trans Pattern Anal Mach Intell 23(2):212–216

    Article  Google Scholar 

  13. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  14. Corke PI (1996) Visual control of robots: high-performance visual servoing. Wiley, New York

    Google Scholar 

  15. Hutchinson S, Hager GD, Corke PI (1996) A tutorial on visual servo control. IEEE Trans Robot Autom 12(5):651–670

    Article  Google Scholar 

  16. Chaumette F, Hutchinson S (2006) Visual servo control, part I: basic approaches. IEEE Robot Autom Mag 13(4):82–90

    Article  Google Scholar 

  17. Chaumette F, Hutchinson S (2007) Visual servo control, part II: advanced approaches. IEEE Robot Autom Mag 14(1):109–118

    Article  Google Scholar 

  18. Corke PI (2011) Robotics, vision and control. Springer, Berlin

    Book  MATH  Google Scholar 

  19. López-Nicolás G, Mezouar Y (2014) Visual control of mobile robots. Robot Auton Syst 62(11):1611–1612

    Article  Google Scholar 

  20. Espiau B, Chaumette F, Rives P (1992) A new approach to visual servoing in robotics. IEEE Trans Robot Autom 8(3):313–326

    Article  Google Scholar 

  21. Malis E, Chaumette F, Boudet S (1999) 2 1/2 D visual servoing. IEEE Trans Robot Autom 15(2):238–250

    Article  Google Scholar 

  22. Andreff N, Espiau B, Horaud R (2000) Visual servoing from lines. In: IEEE international conference on robotics and automation, pp 2070–2075

    Google Scholar 

  23. Corke PI, Hutchinson SA (2001) A new partitioned approach to image-based visual servo control. IEEE Trans Robot Autom 17(4):507–515

    Article  Google Scholar 

  24. Mezouar Y, Chaumette F (2002) Path planning for robust image-based control. IEEE Trans Robot Autom 18(4):534–549

    Article  Google Scholar 

  25. Tahri O, Chaumette F (2005) Point-based and region-based image moments for visual servoing of planar objects. IEEE Trans Robot 21(6):1116–1127

    Article  Google Scholar 

  26. Mariottini GL, Prattichizzo D (2008) Image-based visual servoing with central catadioptric camera. Int J Robot Res 27(1):41–57

    Article  Google Scholar 

  27. Becerra HM, López-Nicolás G, Sagüés C (2010) Omnidirectional visual control of mobile robots based on the 1D trifocal tensor. Robot Auton Syst 58(6):796–808

    Article  Google Scholar 

  28. López-Nicolás G, Gans NR, Bhattacharya S, Sagüés C, Guerrero JJ, Hutchinson S (2010) Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. IEEE Trans Syst Man Cybern B Cybern 40(4):1115–1127

    Article  Google Scholar 

  29. Tahri O, Mezouar Y, Chaumette F, Corke PI (2010) Decoupled image-based visual servoing for cameras obeying the unified projection model. IEEE Trans Rob 26(4):684–697

    Article  Google Scholar 

  30. Silveira G, Malis E (2012) Direct visual servoing: vision-based estimation and control using only nonmetric information. IEEE Trans Rob 28(4):974–980

    Article  Google Scholar 

  31. Geyer C, Daniilidis K (2000) A unifying theory for central panoramic systems and practical implications. In: European conference on computer vision, pp 445–461

    Google Scholar 

  32. Dudek G, Jenkin MRM, Milios E, Wilkes D (1996) A taxonomy for multi-agent robotics. Auton Robot 3(4):375–397

    Article  Google Scholar 

  33. Parker LE (2003) Current research in multirobot systems. Artif Life Robot 7(2–3):1–5

    Article  Google Scholar 

  34. Becker A, Onyuksel C, Bretl T, McLurkin J (2014) Controlling many differential-drive robots with uniform control inputs. Int J Robot Res 33(13):1626–1644

    Article  Google Scholar 

  35. Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand-robot swarm. Science 345(6198):795–799

    Article  Google Scholar 

  36. Dunbar WB, Caveney DS (2012) Distributed receding horizon control of vehicle platoons: stability and string stability. IEEE Trans Autom Control 57(3):620–633

    Article  MathSciNet  Google Scholar 

  37. Cortés J, Martínez S, Karatas T, Bullo F (2004) Coverage control for mobile sensing networks. IEEE Trans Robot Autom 20(2):243–255

    Article  Google Scholar 

  38. Bullo F, Cortés J, Martínez S (2009) Distributed control of robotic networks. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  39. Schwager M, Julian B, Angermann M, Rus D (2011) Eyes in the sky: decentralized control for the deployment of robotic camera networks. Proc IEEE 99(9):1541–1561

    Article  Google Scholar 

  40. Montijano E, Sagüés C (2015) Distributed consensus with visual perception in multi-robot systems. Springer, Berlin

    Book  MATH  Google Scholar 

  41. Tanner HG, Loizou SG, Kyriakopoulos KJ (2003) Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Trans Robot Autom 19(1):53–64

    Article  Google Scholar 

  42. Lindsey Q, Mellinger D, Kumar V (2012) Construction with quadrotor teams. Auton Robot 33(3):323–336

    Article  Google Scholar 

  43. Burgard W, Moors M, Stachniss C, Schneider FE (2005) Coordinated multi-robot exploration. IEEE Trans Rob 21(3):376–386

    Article  Google Scholar 

  44. Cunningham A, Wurm KM, Burgard W, Dellaert F (2012) Fully distributed scalable smoothing and mapping with robust multi-robot data association. In: IEEE international conference on robotics and automation, pp 1093–1100

    Google Scholar 

  45. Murphy RR, Dreger KL, Newsome S, Rodocker J, Slaughter B, Smith R, Steimle E, Kimura T, Makabe K, Kon K, Mizumoto H, Hatayama M, Matsuno F, Tadokoro S, Kawase O (2012) Marine heterogeneous multirobot systems at the great Eastern Japan Tsunami recovery. Journal of Field Robotics 29(5):819–831

    Article  Google Scholar 

  46. Michael N, Shen S, Mohta K, Mulgaonkar Y, Kumar V, Nagatani K, Okada Y, Kiribayashi S, Otake K, Yoshida K, Ohno K, Takeuchi E, Tadokoro S (2012) Collaborative mapping of an earthquake-damaged building via ground and aerial robots. J Field Robot 29(5):832–841

    Article  Google Scholar 

  47. Bhattacharya S, Ghrist R, Kumar V (2014) Multi-robot coverage and exploration on Riemannian manifolds with boundary. Int J Robot Res 33(1):113–137

    Article  Google Scholar 

  48. Alonso-Mora J, Breitenmoser A, Rufli M, Siegwart R, Beardsley P (2012) Image and animation display with multiple mobile robots. Int J Robot Res 31(6):753–773

    Article  Google Scholar 

  49. Balch T, Arkin RC (1999) Behavior-based formation control for multi-robot teams. IEEE Trans Robot Autom 14(6):926–939

    Article  Google Scholar 

  50. Desai JP, Ostrowski JP, Kumar V (2001) Modeling and control of formations of nonholonomic mobile robots. IEEE Trans Robot Autom 17(6):905–908

    Article  Google Scholar 

  51. Lin Z, Francis B, Maggiore M (2005) Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans Autom Control 50(1):121–127

    Article  MathSciNet  Google Scholar 

  52. Mesbahi M, Egerstedt M (2010) Graph theoretic methods in multiagent networks. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  53. Lin J, Morse AS, Anderson BDO (2007) The multi-agent rendezvous problem. Part 1: the synchronous case. SIAM J Control Optim 46(6):2096–2119

    Article  MathSciNet  MATH  Google Scholar 

  54. Yu J, LaValle SM, Liberzon D (2012) Rendezvous without coordinates. IEEE Trans Autom Control 57(2):421–434

    Article  MathSciNet  Google Scholar 

  55. Cortés J, Martínez S, Bullo F (2006) Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans Autom Control 51(8):1289–1298

    Article  MathSciNet  Google Scholar 

  56. Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput Graph 21(4):25–34

    Article  Google Scholar 

  57. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001

    Article  MathSciNet  Google Scholar 

  58. Zavlanos MM, Tanner HG, Jadbabaie A, Pappas GJ (2009) Hybrid control for connectivity preserving flocking. IEEE Trans Autom Control 54(12):2869–2875

    Article  MathSciNet  Google Scholar 

  59. Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233

    Article  Google Scholar 

  60. Martínez S, Cortés J, Bullo F (2007) Motion coordination with distributed information. IEEE Control Syst Mag 27(4):75–88

    Article  Google Scholar 

  61. Ren W, Beard R (2008) Distributed consensus in multi-vehicle cooperative control. Springer, Berlin

    Book  MATH  Google Scholar 

  62. Tardioli D, Mosteo AR, Riazuelo L, Villarroel JL, Montano L (2010) Enforcing network connectivity in robot team missions. Int J Robot Res 29(4):460–480

    Article  Google Scholar 

  63. Zavlanos MM, Egerstedt MB, Pappas GJ (2011) Graph-theoretic connectivity control of mobile robot networks. Proc IEEE 99(9):1525–1540

    Article  Google Scholar 

  64. Zelazo D, Franchi A, Allgower F, Bulthoff H, Giordano PR (2012) Rigidity maintenance control for multi-robot systems. In: Robotics: science and systems

    Google Scholar 

  65. Nedic A, Ozdaglar A (2010) Convergence rate for consensus with delays. J Global Optim 47(3):437–456

    Article  MathSciNet  MATH  Google Scholar 

  66. Panagou D, Kumar V (2014) Cooperative visibility maintenance for leader-follower formations in obstacle environments. IEEE Trans Rob 30(4):831–844

    Article  Google Scholar 

  67. Michael N, Zavlanos MM, Kumar V, Pappas GJ (2008) Distributed multi-robot task assignment and formation control. In: IEEE international conference on robotics and automation, pp 128–133

    Google Scholar 

  68. Aranda M, López-Nicolás G, Sagüés C (2010) Omnidirectional visual homing using the 1D trifocal tensor. In: IEEE international conference on robotics and automation, pp 2444–2450

    Google Scholar 

  69. Aranda M, López-Nicolás G, Sagüés C (2013) Angle-based homing from a reference image set using the 1D trifocal tensor. Auton Robot 34(1–2):73–91

    Article  Google Scholar 

  70. Aranda M, López-Nicolás G, Sagüés C (2013) Sinusoidal input-based visual control for nonholonomic vehicles. Robotica 31(5):811–823

    Article  Google Scholar 

  71. Aranda M, López-Nicolás G, Sagüés C (2012) Planar motion estimation from 1D homographies. In: International conference on control, automation, robotics and vision, pp 329–334

    Google Scholar 

  72. Aranda M, López-Nicolás G, Sagüés C (2013) Controlling multiple robots through multiple 1D homographies. In: IEEE international conference on systems, man and cybernetics, pp 589–594

    Google Scholar 

  73. López-Nicolás G, Aranda M, Mezouar Y, Sagüés C (2012) Visual control for multirobot organized rendezvous. IEEE Trans Sys Man Cybern Part B Cybern 42(4):1155–1168

    Article  Google Scholar 

  74. Aranda M, Mezouar Y, López-Nicolás G, Sagüés C (2013) Partially distributed multirobot control with multiple cameras. In: American control conference, pp 6323–6329

    Google Scholar 

  75. Aranda M, López-Nicolás G, Sagüés C, Mezouar Y (2015) Formation control of mobile robots using multiple aerial cameras. IEEE Trans Rob 31(4):1064–1071

    Article  Google Scholar 

  76. Aranda M, López-Nicolás G, Sagüés C, Zavlanos MM (2014) Three-dimensional multirobot formation control for target enclosing. In: IEEE/RSJ international conference on intelligent robots and systems, pp 357–362

    Google Scholar 

  77. Aranda M, López-Nicolás G, Sagüés C, Zavlanos MM (2015) Coordinate-free formation stabilization based on relative position measurements. Automatica 57:11–20

    Article  MathSciNet  MATH  Google Scholar 

  78. Aranda M, López-Nicolás G, Sagüés C, Zavlanos MM (2016) Distributed formation stabilization using relative position measurements in local coordinates. IEEE Trans Autom Control 61(12):3925–3935

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Aranda .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aranda, M., López-Nicolás, G., Sagüés, C. (2017). Introduction. In: Control of Multiple Robots Using Vision Sensors. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-57828-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57828-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57827-9

  • Online ISBN: 978-3-319-57828-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics