Skip to main content

Analysis of the Illapel Mw = 8.3 Thrust Earthquake Rupture Zone Using GOCE-Derived Gradients

  • Chapter
  • First Online:
The Chile-2015 (Illapel) Earthquake and Tsunami

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 925 Accesses

Abstract

Satellite gravimetry has proven to be a useful tool to identify mass anomalies along a subduction interface, interpreted as heterogeneities related to the rupture process during megathrust earthquakes. In the last years, different works, reinforced with data derived from satellite gravity missions as GRACE and now GOCE, have analyzed not only the static component of the Earth gravity field, but also its temporal variations and relation to the seismic cycle.In particular, during the last decade, the Chilean margin has been affected by three megathrust earthquakes (withMw>8): Maule 2010 Mw = 8.8, Pisagua 2014 Mw = 8.2 and recently the Mw = 8.3 Illapel event. Then, the recently completed GOCE mission (November 2009 to November 2013) offered a unique opportunity to study the Maule February 2010 and Pisagua April 2014 events by means of gravity gradients, directly measured at satellite height altitudes, which allowed mapping density heterogeneities with greater detail than the gravity anomaly which has been used in most studies up to now. In the present work, we use the last GOCE model (GO_CONS_GCF_2_DIR_R5), the one of higher spatial resolution (N = 300, λ/2 ≈ 66 km) derived from satellite-only data. The methodology used is the same as that to study the previous events, with the addition that now we derived a relation between the associated depths of a causative mass with a determined degree of the spherical harmonic expansion. This allowed to ‘‘decompose’’ the gravimetric signal, by cutting off the degree/order of the harmonic expansion, as depth increases. From this analysis, we found that prominent oceanic features such as the Challenger fracture zone and the Juan Fernandez ridge played a key role in latitudinal seismic segmentation for the Illapel earthquake rupture zone, acting as barriers/attenuators to the seismic energy release. We compared the slip model from Tilmann et al. (Geophysical Research Letters 43: 574–583. doi: 10.1002/2015GL066963, 2016) for the Illapel earthquake with vertical gravity gradient with and without sediment correction, and at different degree/order of the harmonic expansion. From this analysis, we inferred that prominent oceanic features over the subducting Nazca plate play a key role in seismic segmentation not only at heavily sedimented trenches, but also at sediment-starved segments.

This paper is part of the article collection on ‘‘Illapel, Chile, Earthquake on September 16th, 2015’’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K. (1981). Magnitudes of large shallow earthquakes from 1904 to 1980. Physics Of The Earth And Planetary Intreriors, 27, 72–92.

    Google Scholar 

  • Alvarez, O., Gimenez, M. E., Braitenberg, C., & Folguera, A. (2012). GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region. Geophysical Journal International, 190(2), 941–959. doi:10.1111/j.1365-246X.2012.05556.x.

  • Alvarez, O., Gimenez, M. E., & Braitenberg, C. (2013). Nueva metodología para el cálculo del efecto topográfico para la corrección de datos satelitales. Revista de la Asociación Geológica Argentina, 70(4), 422–429.

    Google Scholar 

  • Alvarez, O., Nacif, S., Gimenez, M., Folguera, A., & Braitenberg, A. (2014). Goce derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics, 622, 198–215. doi:10.1016/j.tecto.2014.03.011.

  • Alvarez, O., Nacif, S., Spagnotto, S., Folguera, A., Gimenez, M.,Chlieh, M., Braitenberg, C. (2015a). Gradients from GOCE reveal gravity changes before Pisagua Mw =8.2 and Iquique Mw =7.7 large megathrust earthquakes. Journal of South American Earth Sciences, 64P2, 15–29. http://dx.doi.org/10.1016/j.jsames. 2015.09.014

  • Alvarez, O., Gimenez, M. E., Martinez, M. P., LinceKlinger, F., Braitenberg, C., (2015b). New insights into the Andean crustal structure between 32° and 34°S from GOCE satellite gravity data and EGM2008 model. In: Sepúlveda, S.A., Giambiagi, L.B., Moreiras, S.M., Pinto, L., Tunik M., Hoke, G.D., Farías, M., (Eds.), Geodynamic Processes in the Andes of Central Chile and Argentina 399, pp. 183–202. London: Geological Society, Special Publications. http://dx.doi.org/10.1144/SP399.3

  • Alvarez, O., Gimenez, M., Folguera, A., Spagnotto, S., Bustos, E., Baez, W., et al. (2015c). New evidence about the subduction of the Copiapó ridge beneath South America, and its connection with the Chilean-Pampean flat slab, tracked by satellite GOCE and EGM2008 models. Journal of Geodynamics, 91C, 65–88. doi:10.1016/j.jog.2015.08.002.

  • Amante, C., Eakins, B.W., (2009). ETOPO1, 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, pp. 19

    Google Scholar 

  • ANCORP Working Group. (2003). Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96)). Journal Geophysical Research, 108(B7), 2328. doi:10.1029/2002JB001771.

  • Asgharzadeh, M. F., Von Frese, R. R. B., Kim, H. R., Leftwich, T. E., & Kim, J. W. (2007). Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophysical Journal International, 169, 1–11. doi:10.1111/j.l365-246X.2007.03214.x.

  • Bangs, N. L., & Cande, S. C. (1997). Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics, 16(3), 489–505.

    Google Scholar 

  • Barrientos, S. E. (1988). Slip distribution of the 1985 Central Chile earthquake. Tectonophysics, 145(3–4), 225–241. doi:10.1016/0040-1951(88)90197-7.

  • Barrientos, S. E. (1995). Dual seismogenic behaviour: the 1985 central Chile earthquake. Geophysical Research Letters, 22, 3541–3544. doi:10.1029/95GL03316.

  • Barthelmes, F., 2013. Definition of functionals of the geopotential and their calculation from spherical harmonic models. Theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM). Scientific Technical Report, STR09/02, Revised edition, January 2013. GFZ German Research Centre for Geosciences, Postdam, Germany. http://icgem.gfz-postdam.de/ICGEM

  • Beck, S., Barrientos, S., Kausel, E., & Reyes, M. (1998). Source characteristics of historic earthquakes along the central Chile subduction zone. Journal of South American Earth Sciences, 11, 115–292.

    Google Scholar 

  • Bedford, J., Moreno, M., Schurr, B., Bartsch, M., & Oncken, O. (2015). Investigating the final seismic swarm before the Iquique-Pisagua 2014 Mw 8.1 by comparison of continuous GPS and seismic foreshock data. Geophysical Reseach Letters, 42, 3820–3828. doi:10.1002/2015GL063953.

  • Bilek, S.L., (2007). Influence of subducting topography on earthquake rupture. In: Dixon, T. and C. Moore. (Eds.) The Seismogenic Zone of Subduction Thrust Faults (pp. 123–146). New York: Columbia University.

    Google Scholar 

  • Bomfim, E. P., Braitenberg, C., & Molina, E. C. (2013). Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophysical Journal International, 195(2), 870–882. doi:10.1093/gji/ggt283.

  • Bouman, J., Ebbing, J., & Fuchs, M. (2013). Reference frame transformation of satellite gravity gradients and topographic mass reduction. Journal of Geophysical Research: Solid Earth, 118(2), 759–774. doi:10.1029/2012JB009747.

  • Bowin, C. O. (1983). Depth of principal mass anomalies contributing to the Earth’s geoid undulations and gravity anomalies. Marine Geodesy, 7, 61–100.

    Google Scholar 

  • Braitenberg, C., Wienecke, S., Ebbing, J., Bom, W., & Redfield, T. (2007). Joint gravity and isostatic analysis for basement studies— a novel tool. In: EGM. International Workshop, Innovation in EM, Grav and Mag Methods: a new perspective for exploration. Capri: Villa Orlandi. (Extended Abstracts).

    Google Scholar 

  • Braitenberg, C., Mariani, P., Ebbing, J., Sprlak, M., (2011). The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields. In: D.J.J. Van Hinsbergen, S.J.H. Buiter,T.H. Torsvik, C. Gaina and S.J. Webb. (Eds.), The formation and evolution of Africa: a synopsis of 3.8 Ga of Earth History, Vol. 357, pp. 329–341. London: Geological Society, Special Publication. doi:10.1144/SP357.18

  • Bruinsma, S.L., Marty, J.C., Balmino. G., Biancale, R., Förste, C., Abrikosov, O., Neumayer, H. (2010). GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, (27) SP-686. Bergen, Norway: ESA Publication.

    Google Scholar 

  • Bruinsma, S. L., Förste, C., Abrikosov, O., Marty, J. C., Rio, M. H., Mulet, S., et al. (2013). The new ESA satellite-only gravity field model via the direct approach. Geophysical Reseach Letters, 40, 3607–3612.

    Google Scholar 

  • Bucha, B., & Janák, J. (2013). A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Computers & Geosciences, 56, 186–196. doi:10.1016/j.cageo.2013.03.012.

  • Bürgmann, R. (2014). Warning signs of the Iquique earthquake. Nature, 512, 258–259.

    Google Scholar 

  • Cahill, T., & Isacks, B. (1992). Seismicity and shape of the subducted Nazca plate. Journal Geophysical Research, 97(B12), 17503–17529.

    Google Scholar 

  • Cesca, S., Grigoli, F., Heimann, S., Dahm, T., Kriegerowski, M., Sobiesiak, M., et al. (2016). The Mw 8.1 2014 Iquique, Chile, seismic sequence: a tale of foreshocks and aftershocks. Geophysical Journal International, 204, 1766–1780. doi:10.1093/gji/ggv544.

  • Christensen, D. H., & Ruff, L. J. (1986). Rupture process of the March 3, 1985 Chilean earthquake. Geophysical Reseach Letters, 13, 721–724.

    Google Scholar 

  • Cloos, M. (1992). Thrust-type subduction zone earthquakes and seamount asperities: a physical model for seismic rupture. Geology, 20(7), 601–604.

    Google Scholar 

  • Cloos, M., & Shreve, R. L. (1996). Shear-zone thickness and the seismicity of Chilean- and Marianas-type subduction zones. Geology, 24(2), 107–110.

    Google Scholar 

  • Comte, D., Eisenberg, A., Lorca, E., Pardo, M., Ponce, L., Saragoni, R., et al. (1986). The 1985 Central Chile earthquake: a repeat of previous great earthquakes in the region? Science, 233, 449–453. doi:10.1126/science.233.4762.449.

  • Contreras-Reyes, E., & Carrizo, D. (2011). Control of high oceanic features ans subduction channel on earthquake ruptures along the Chile-Peru subduction zone. Physics of the Earth and Planetary Interiors, 186, 49–58.

    Google Scholar 

  • Contreras-Reyes, E., Flueh, E., & Grevemeyer, L. (2010). Tectonic control on sediment accretion and subduction off south-central Chile: Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. Tectonics, 29, TC6018.

    Google Scholar 

  • Das, S., & Watts, A. B. (2009). Effect of subducting seafloor topography on the rupture characteristics of great subduction zone earthquakes. In S. Lallemand & F. Funiceillo (Eds.), Subduction Zone Geodynamics (pp. 103–118). Berlin-Heidelberg: Springer-Verlag.

    Google Scholar 

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181, 1–80.

    Google Scholar 

  • Divins, D. L. (2003). Total Sediment Thickness of the World’s Oceans and Marginal Seas. Boulder CO: NOAA National Geophysical Data Center.

    Google Scholar 

  • Featherstone, W. (1997). On the use of the geoid in geophysics: a case study over the northwest shelf of Australia. Exploration Geophysics, 28(1/2), 52–57.

    Google Scholar 

  • Flueh, E. R., Vidal, N., Ranero, C. R., Hokja, A., von Huene, R., Bialas, J., et al. (1998). Seismic investigation of the continental margin off- and onshore Valparaiso, Chile. Tectonophysics, 288, 251–263.

    Google Scholar 

  • Forsberg, R., (1984). A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling, Scientific Report N. 5, AFGL-TR-84–0174, Department of Geodetic Science and Survey-ing, pp. 133. Columbus: Ohio State University.

    Google Scholar 

  • Forsberg, R. & Tscherning, C.C., (19970. Topographic effects in gravity mod- eling for BVP, In: F. Sanso & R. Rummel (Eds.), Geodetic Boundary Value Problems in View of the One Centimeter Geoid, Lecture Notes in Earth Science, Vol. 65, pp. 241–272. Berlin: Springer.

    Google Scholar 

  • Fuchs, M. J., Bouman, J., Broerse, T., Visser, P., & Vermeersen, B. (2013). Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry. Journal of Geophysical Research: Solid Earth, 118, 1–10. doi:10.1002/jgrb.50381.

  • Geersen, J., Ranero, C., Barkhausen, U., & Reichert, C. (2015). Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area. Nature Communications, 6, 8267. doi:10.1038/ncomms9267.

  • Grombein, T., Heck, B., & Seitz, K. (2010). Untersuchungen zur effizienten Berechnungtopographischer Effekte auf den Gradiententensor am Fallbeispiel der Satelliten gradiometrie mission GOCE. Karlsruhe Institute of Technology, KIT Scientific Reports 7547, pp. 1–94, ISBN 978-3-86644-510-9.

    Google Scholar 

  • Grombein, T., Seitz, K., & Heck, B. (2013). Optimized formulas for the gravitational field of a tesseroid. Journal of Geodesy, 87(7), 645–660.

    Google Scholar 

  • Heck, B., & Seitz, K. (2007). A comparison of the tesseroid, prism and point mass approaches for mass reductions in gravity field modeling. Journal of Geodesy, 81(2), 121–136. doi:10.1007/s00190-006-0094-0.

  • Heuret, A., Conrad, C. P., Funiciello, F., Lallemand, S., & Sandri, L. (2012). Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophysical Reseach Letters, 39, L05304. doi:10.1029/2011GL050712.

  • Hofmann-Wellenhof, B., Moritz, H., (2006). Physical Geodesy, 2nd edn, pp. 286. Berlin: Springer.

    Google Scholar 

  • Hyndman, G. C., Dragert, H., Wrang, K., Clague, J. J., Adams, J., & Bobrowsky, P. T. (1996). Giant Earthquakes beneath Canadás West Coast. Geociences Canada, 23(2), 63–72.

    Google Scholar 

  • Janak, J., & Sprlak, M. (2006). New software for gravity field modelling using spherical armonic. Geodetic and Cartographic Horizon, 52, 1–8. (in Slovak).

    Google Scholar 

  • Ji, C., Wald, D. J., & Helmberger, D. V. (2002). Source description of the 1999 Hector Mine, California earthquake; Part I: wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America, 92(4), 1192–1207.

    Google Scholar 

  • Kelleher, J. A. (1972). Rupture zones of large South American earthquakes and some predictions. Journal Geophysical Research, 77, 2087-2103.

    Google Scholar 

  • Kelleher, J., & Mc Cann, W. (1976). Buoyant zones, great earthquakes, and unstable boundaries of subduction. Journal Geophysical Research, 81, 4885–4896.

    Google Scholar 

  • Kendrick, E., Bevis, M., Smalley, R., & Brooks, B. (2001). An integrated crustal velocity field for the Central Andes. Geochemistry, Geophysics, Geosystems, 2, 1066. doi:10.1029/2001GC000191.

  • Kendrick, E., Bevis, M., Smalley, R., Brooks, B., Barriga, R., & Lauri, E. (2003). The Nazca-south America Euler vector and its rate of change. Journal of South American Earth Sciences, 16, 125–131.

    Google Scholar 

  • Kodaira, S., Takahashi, N., Nakanishi, A., Miura, S., & Kaneda, Y. (2000). Subducted seamount imaged in the rupture zone of the 1946 Nankaido earthquake. Science, 289, 104–106.

    Google Scholar 

  • Kopp, H. (2013). Invited review paper: the control of subduction zone structural complexity and geometry on margin segmentation and seismicity. Tectonophysics, 589, 1–16. doi:10.1016/j.tecto.2012.12.037.

  • Lamb, S., & Davis, P. (2003). Cenozoic climate change as a possible cause for the rise of the Andes. Nature, 425, 792–797.

    Google Scholar 

  • Landgrebe, T. C. W., & Müller, R. D. (2015). Uncovering the relationship between subducting bathymetric ridges and volcanic chains with significant earthquakes using geophysical data mining. Australian Journal of Earth Sciences, 62, 171180. doi:10.1080/08120099.2015.1003145.

  • Laursen, J., Scholl, D. W., & von Huene, R. (2002). Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction. Tectonics, 21(5), 1038. doi:10.1029/2001TC901023.

  • Lay, T., Kanamori, H., & Ruff, L. (1982). The asperity model and the nature of large subduction zone earthquakes. Earthquake Prediction Research, 1, 3–71.

    Google Scholar 

  • Lay, T., Yue, H., Brodsky, E. E., & An, C. (2014). The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophysical Reseach Letters, 41, 3818–3825. doi:10.1002/2014GL060238.

  • Li, X. (2001). Vertical resolution: gravity versus vertical gravity gradient. The Leading Edge, 20, 901–904.

    Google Scholar 

  • Llenos, A. L., & Mc Guire, J. J. (2007). Influence of fore-arc structure on the extent of great subduction zone earthquakes. Journal Geophysical Research, 112, B09301.

    Google Scholar 

  • Lohrmann, J., Kukowski, N., Krawczyk, C. M., Oncken, O., Sick, C., Sobiesiak, M., et al. (2006). Subduction channel evolution in brittle fore-arc wedges—a combined study with scaled sandbox experiments, seismological and reflection seismic data and geological field evidence. In O. Oncken, G. Chong, G. Franz, P. Giese, H.-J. Go¨tze, V. A. Ramos, M. R. Strecker, & P. Wigger (Eds.), The andes—active subduction orogeny. Frontiers in earth science series (pp. 237–262). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Maksymowicz, A., Tréhuc, A., Contreras-Reyes, E., & Ruiz, S. (2015). Density-depth model of the continental wedge at the maximum slip segment of the Maule Mw8.8 megathrust earthquake. Earth and Planetary Science Letters, 409, 265–277. doi:10.1016/j.epsl.2014.11.005.

  • Mendoza, C., Hartzell, S., & Monfret, T. (1994). Wide band analysis of the 3 March 1985 central Chile earthquake: overall source process and rupture history. Bulletin of the Seismological Society of America, 84, 269–283.

    Google Scholar 

  • Metois, M., Socquet, A., Vigny, C., Carrizo, D., Peyrat, S., Delorme, A., et al. (2013). Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophysical Journal International, 194, 1283–1294. doi:10.1093/gji/ggt183.

  • Métois, M., Socquet, A., & Vigny, C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. Journal of Geophysical Research.doi:10.1029/2011JB008736.

  • Métois, M., Vigny, C., Socquet, A., Delorme, A., Morvan, S., Ortega, I., et al. (2014). GPS-derived interseismic coupling on the subduction and seismic hazards in the Atacama region, Chile. Geophysical Journal International, 196(2), 644–655. doi:10.1093/gji/ggt418.

  • Métois, M., Vigny, C., & Socquet, A. (2016). Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18°S). Pure and Applied Geophysics. doi:10.1007/s00024-016-1280-5. (in press).

  • Montessus de Ballore, F. 1912. Historia sismica de los Andes meridionales al sur del paralelo XVI. Anales de la Universidad de Chile, Vol. 4, p. 2. Santiago de Chile: Editorial Cervantes.

    Google Scholar 

  • Moreno, M. S., Melnick, D., Rosenau, M., Baez, J., Klotz, J., Oncken, O., Tassara, A., Chen, J., Bataille, K., Bevis, M., Socquet, A., Bolte, J., Vigny, C., Brooks, B., Ryder, I., Grund, V., Smalley, B., Carrizo, D., Bartsch, M., & Hase, H. (2012). Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth and Planetary Science Letters, 321–322, 152–165. doi:10.1016/j.epsl.2012.01.006.

  • Moreno, M., Bartsch, M., Zhang, Y., Oncken, O., Tilmann, F., Dahm, T., et al. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512, 299–302. doi:10.1038/nature13681.

  • Mulcahy, P., Chen, C., Kay, S., Brown, L., Isacks, B., Sandvol, E., et al. (2015). Central Andean Mantle and crustal seismicity under the Southern Puna plateau and Northern Margin of the Chilean Flatslab. Tectonics. doi:10.1002/2013TC003393. (in press).

  • Müller, R. D., & Landgrebe, T. C. W. (2012). The link between great earthquakes and the subduction of oceanic fracture zones. Solid Earth, 3, 447–465. doi:10.5194/se-3-447-2012.

  • Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates and spreading symmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9, Q04006. doi:10.1029/2007GC001743.

  • Nagy, D. (1966). The gravitational attraction of a right rectangular prism. Geophysics, 31(2), 362–371.

    Google Scholar 

  • Nagy, D., Papp, G., & Benedek, J. (2000). The gravitational potential and its derivatives for the prism. Journal of Geodynamics, 74(7–8), 552–560. doi:10.1007/s001900000116.

  • Nishenko, S. P. (1985). Seismic Potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America. A quantitative reappraisal. Journal of Geophysical Research, 90, 3589–3615.

    Google Scholar 

  • Pail, R., Bruisma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W. D., et al. (2011). First GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85, 819–843.

    Google Scholar 

  • Ranero, C., von Huene, R., Weinrebe, W., & Reichert, C. (2006). Tectonic Processes along the Chile Convergent Margin. In O. Oncken, G. Chong, G. Franz, P. Giese, H. J. Götze, V. A. Ramos, M. R. Strecker, & P. Wigger (Eds.), The andes—active subduction orogeny. Frontiers in earth science series (pp. 91–121). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Ruff, L. J. (1989). Do trench sediments affect great earthquake occurrence in subduction zones? Pure and Applied Geophysics, 129, 263–282.

    Google Scholar 

  • Ruiz, S., Grandin, R., Dionicio, V., Satriano, C., Fuenzalida, A., Vignyc, C., et al. (2013). The Constitución earthquake of 25 March 2012: a large aftershock of the Maule earthquake near the bottom of the seismogenic zone. Earth and Planetary Scinces Letters, 377–378, 347–357.

    Google Scholar 

  • Ruiz, S., Métois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., et al. (2014). Intense foreshocks and a slow slip event preceded the 2014 iquique mw 8.1 earthquake. Science, 345(6201), 1165–1169. doi:10.1126/science.1256074.

  • Sallares, V., & Ranero, C. R. (2005). Structure of the North Chile erosional convergent margin off Antofagasta (23°30΄S). Journal Geophysical Research. doi:10.1029/2004JB003418.

  • Sandwell, D. T., & Smith, W. H. F. (1997). Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. Journal of Geophysical Research, 102, 10039–10050.

    Google Scholar 

  • Schertwath, M., Contreras-Reyes, E., Flueh, E., Grevemeyer, J., Krabbenhoeft, A., Papenberg, C., et al. (2009). Deep lithospheric structures along the southern central Chile margin from wideangle P-wave modelling. Geophysical Journal International, 179(1), 579–600.

    Google Scholar 

  • Scholl, D., Huene, R., Kirby, S., (2010). The Aleutian Alaska subduction zone is prone to rupture in great and giant megathrust earthquakes—how scientific information can mitigate consequences. Newsletter of the Alaska Geological Society BP Energy Center.

    Google Scholar 

  • Scholz, C. H., & Small, C. (1997). The effect of seamount subduction on seismic coupling. Geology, 25(6), 487–490.

    Google Scholar 

  • Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., et al. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512, 299–302. doi:10.1038/nature13681.

  • Schweller, W.J., Kulm, L.D., Prince, R.A. 1981. Tectonics structure, and sedimentary framework of the Perú-Chile Trench. In: Kulm LD, et al. (Eds). Nazca Plate: Crustal formation and Andean convergence. Memories of Geological Society America 154:323–349

    Google Scholar 

  • Shinohara, M., Machida, Y., Yamada, T., Nakahigashi, K., Shinbo, T., Mochizuki, K., et al. (2012). Precise aftershock distribution of the 2011 off the Pacific coast of Tohoku Earthquake revealed by an ocean-bottom seismometer network. Earth Planets Space, 64(12), 1137–1148. doi:10.5047/eps.2012.09.003.

  • Sobiesak, M., Meyer, U., Schmidt, S., Götze, H. J., & Krawczyk, C. (2007). Asperity generating upper crustal sources revealed by b-value and isostatic residual anomaly grids in the area of Antofagasta. Journal Geophysical Research, 112, B12308. doi:10.1029/2006JB004796.

  • Song, T. R., & Simons, M. (2003). Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science, 301, 630–633.

    Google Scholar 

  • Sparkes, R., Tilmann, F., Hovius, N., & Hillier, J. (2010). Subducted seafloor relief stops rupture in South American great earthquakes: implications for rupture behaviour in the 2010 Maule, Chile earthquake. Earth and Planetary Science Letters, 298, 89–94. doi:10.1016/j.epsl.2010.07.029.

  • Tassara, A. (2010). Control of forearc density structure on megathrust shear strength along the Chilean subduction zone. Tectonophysics, 495, 34–47. doi:10.1016/j.tecto.2010.06.004.

  • Tilmann, F., Zhang, Y., Moreno, M., Saul, J., Eckelmann, F., Palo, M., et al. (2016). The 2015 Illapel earthquake, central Chile: a type case for a characteristic earthquake? Geophysical Reseach Letters, 43, 574–583. doi:10.1002/2015GL066963.

  • Uieda, L., Ussami, N., Braitenberg, C.F., (2010). Computation of the gravity gradient tensor due to topographic masses using tesseroids. Eos Trans. AGU, 91 (26). Meeting America Supply, Abstract G22A-04. http://code.google.com/p/tesseroids/

  • Völker, D., Wiedicke, M., Ladage, S., Gaedicke, C., Reichert, C., Rauch, K., Kramer, W., Heubeck, C., (2006). Latitudinal Variation in Sedimentary Processes in the Peru-Chile Trench off Central Chile. In Oncken et al. (Eds.), The Andes- Active Subduction Orogeny, Frontiers in Earth Science Series, Part II, pp. 193–216. Berlin Heidelberg New York: Springer-Verlag. doi:10.1007/978-3-540-48684-8_9.

  • Von Huene, R., Corvalán, J., Flueh, E.R., Hinz, K., Korstgard, J., Ranero, C.R.,Weinrebe, W., CONDOR scientists, 1997. Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics16 (3), 474–488.

    Google Scholar 

  • Wang, K., & Bilek, S. (2011). Do subducting seamounts generate or stop large earthquakes? Geology, 39, 819–822. doi:10.1130/G31856.1.

  • Watts, A. B., Koppers, A. A. P., & Robinson, D. P. (2010). Seamount subduction and earthquakes. Oceanography, 23(1), 166–173.

    Google Scholar 

  • Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W., & Dinterman, P. A. (2003). Basin centered asperities in great subduction zone earthquakes: a link between slip, subsidence and subduction erosion? Journal Geophysical Research, 108(B10), 2507–2536. doi:10.1029/2002JB002072.

  • Wessel, P., & Smith, W. H. F. (1998). New, Improved Version of the Generic Mapping Tools Released. EOS Transactions, AGU, 79(47), 579.

    Google Scholar 

  • Whittaker, J., Goncharov, A., Williams, S., Müller, R. D., & Leitchenkov, G. (2013). Global sediment thickness dataset updated for the Australian-Antarctic Southern Ocean. Geochemistry, Geophysics, Geosystems, 14, 3297–3305. doi:10.1002/ggge.20181.

  • Wild-Pfeiffer, F. (2008). A comparison of different mass element for use in gravity gradiometry. Journal of Geodesy, 82, 637–653. doi:10.1007/s00190-008-0219-8.

  • Yáñez, G. A., Ranero, C. R., von Huene, R., & Diaz, J. (2001). Magnetic anomaly interpretation across the southern Central Andes (32 –34 S). The role of the Juan Fernandez Ridge in the late Tertiary evolution of the margin. Journal of Geophysical Research: Solid Earth, 106(B4), 6325–6345.

    Google Scholar 

  • Yáñez, G., Cembrano, J., Pardo, M., Ranero, C., & Selles, D. (2002). The Challenger-Juan Fernandez-Maipo major tectonic transition of the Nazca-Andean subduction system at 33–34°S: geodynamic evidence and implications. Journal of South American Earth Sciences, 15, 22–38.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the use of the GMT mapping software of Wessel and Smith (1998) to Dr. Gavin P. Hayes, Research Geophysicist at USGS National Earthquake Information Center for his useful preliminary slip model, and to Juraj Janak and Blazej Bucha (Department of Theoretical Geodesy, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia) for the software (GrafLab) for spherical harmonic synthesis. The authors would like to thank CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Álvarez, O., Pesce, A., Gimenez, M., Folguera, A., Soler, S., Chen, W. (2017). Analysis of the Illapel Mw = 8.3 Thrust Earthquake Rupture Zone Using GOCE-Derived Gradients. In: Braitenberg, C., Rabinovich, A. (eds) The Chile-2015 (Illapel) Earthquake and Tsunami. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-57822-4_8

Download citation

Publish with us

Policies and ethics