Skip to main content

Ionospheric Plasma Response to M w 8.3 Chile Illapel Earthquake on September 16, 2015

  • Chapter
  • First Online:

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

The lithosphere and the atmosphere/ionosphere continuously exchange energy through various coupling mechanisms. In particular, the earth surface displacement caused by earthquakes, volcanoes and tsunamis can manifest as ionospheric plasma perturbations. We investigate the coseismic induced ionospheric total electron content (TEC) perturbations following the M w 8.3 Illapel thrust earthquake that occurred on September 16, 2015. The continuous global positioning system (GPS) data at 48 sites from Centro Sismológico Nacional and International GNSS Service GPS networks have been used in this study. The nearest GPS site recorded the ionospheric response 10 min after the occurrence of this earthquake. The maximum vertical coseismic induced TEC amplitude is ~1.4 TECU, and the perturbations are pronounced in the northern region of the epicenter and confined to less than ~1500 km radius. The average horizontal acoustic wave velocity has been determined as ~1260 m/s. We also observed acoustic resonance recorded by PRN 12 at 4.3 mHz corresponding to the first overtone of acoustic mode and lasting for about 30 min. In this study, we present characteristics of GPS derived ionospheric plasma perturbations following Illapel earthquake.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afraimovich E. L, Perevalova N. P., Plotnikov A. V., Uralov A. M., (2001), The shock-acoustic waves generated by the earthquakes. Ann. Geophys., 19(4), 395–409.

    Google Scholar 

  • Angermann D., Klotz J., Reigber C., (1999), Space-geodetic estimation of the Nazca- South America Euler vector. Earth Planet Sci. Lett., 171, 329–334.

    Google Scholar 

  • Artru J., Farges T., Lognonne P., (2004), Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observations and normal-mode modeling. Geophys. J. Int., 158, 1067–1077.

    Google Scholar 

  • Astafyeva, E., and Heki, K., (2009), Dependence of wave form of near-field coseismic ionospheric disturbances on focal mechanisms. Earth Planet Space, 61, 939–943.

    Google Scholar 

  • Bishop, R. L., N. Aponte, G. D. Earle, M. Sulzer, M. F. Larsen, and G. S. Peng (2006), Arecibo observations of ionospheric perturbations associated with the passage of Tropical Storm Odette, J. Geophys. Res., 111, A1132, doi:10.1029/2006JA011668.

  • Cahyadi, M. N., and K. Heki (2015), Coseismic ionospheric disturbance of the large strike-slip earthquakes in North Sumatra in 2012: Mw dependence of the disturbance amplitudes, Geophys. J. Int., 200, 116–129.

    Google Scholar 

  • Calais E., Minster J.B., (1996), GPS detection of ionospheric perturbations following a Space Shuttle ascent. Geophys. Res. Lett., 23, 1897–1900.

    Google Scholar 

  • Calais E., Minster J. B., Hofton M., Hedlin M., (1998), Ionospheric signature of surface mine blasts from Global Positioning System measurements. Geophys. J. Int., 132, 191–202.

    Google Scholar 

  • Calais E., Haase J. S., Minster J.B., (2003), Detection of ionospheric perturbations using a dense GPS array in Southern California. Geophys. Res. Lett., 30(12), 628, doi:10.1029/2003GL017708.

  • Chlieh M., et al., (2011), Interseismic coupling and seismic potential along the Central Andes subduction zone. J. Geophys. Res., 116, B12405, doi:10.1029/2010JB008166.

  • Choosakul, N., A. Saito, T. Iyemori, and M. Hashizume, (2009), Excitation of four minute periodic ionospheric variations following the great Sumatra-Andaman earthquake in 2004, J. Geophys. Res., 114, A10313, doi:10.1029/2008JA013915.

  • Dautermann, T., E. Calais, P. Lognonne, and G. S. Mattioli (2009), Lithosphere–atmosphere–ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills Volcano, Montserrat, Geophys. J. Int., 179, 1537–1546, doi:10.1111/j.1365-246X.2009.04390.x.

  • Ding F., Wan W., Mao T., Wang M., Ning B., Zhao B., Xiong B., (2014), Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett., 41, 3351–3358, doi:10.1002/2014GL060107.

  • Ducic V., Artru J., Lognonne P., (2003), Ionospheric remote sensing of the denali earthquake rayleigh surface waves. Geophys. Res. Lett., 30(18), 1951–1954.

    Google Scholar 

  • Galvan D. A., Komjathy A., Hickey M. P., Mannucci A.J., (2011), The 2009 Samoa and 2010 Chile tsunamis as observed in the ionosphere using GPS total electron content. J. Geophys. Res., 116, A06318, doi:10.1029/2010JA016204.

  • Heki K., (2011), Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett., 38, L17312, doi:10.1029/2011GL047908.

  • Heki K. and Ping J., (2005), Directivity and apparent velocity of the coseismicionospheric disturbances observed with a dense GPS array. Earth Planet Sci. Lett., 236, 845–855, doi:10.1016/j.epsl.2005.06.010.

  • Huang, Y. N., C. Kang, and S. W. Chen (1985), On the detection of acoustic gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system, Radio Sci., 20, 897–906, doi:10.1029/RS020i004p00897.

  • Kobayashi, N. A, (2007), New method to calculate normal modes, Geophys. J. Int. 168, 315–331.

    Google Scholar 

  • Lin J. and Stein R. S., (2004), Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res., 109, B02303, doi:10.1029/2003JB002607.

  • Liu J. Y., Tsai Y. B., Chen S. W., Lee C. P., Chen Y. C., Yen H. Y., Chang W. Y., Liu C., (2006), Giant ionospheric disturbances excited by the M 9.3 Sumatra earthquake of 26 December 2004. Geophys. Res. Lett., 33, L02103, doi:10.1029/2005GL023963.

  • Liu J.Y., Chen Y.I., Huang C.C., Parrot M., Shen X.H., Pulinets S.A., Yang Q.S., Ho Y.Y., (2015), A spatial analysis on seismoionospheric anomalies observed by DEMETER during the 2008 M8.0 Wenchuan earthquake, Journal of Asian Earth Sciences, 114, 414–419.

    Google Scholar 

  • Lognonné, P., E. Clévédé, and H. Kanamori (1998), Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical Earth model with realistic atmosphere, Geophys. J. Int., 135, 388–406.

    Google Scholar 

  • Lognonné, P. J., R. Artru, F. Garcia, V. Crespon, E. Ducic, G. Jeansou, J. Occhipinti, G. Helbert, G. Moreaux, and P. E. Godet (2006), Ground based GPS imaging of ionospheric post-seismic signal, Planet. Space Sci., 54, 528–540.

    Google Scholar 

  • Matsumura, M., A. Saito, T. Iyemori, H. Shinagawa, T. Tsugawa, Y. Otsuka, M. Nishioka, and C. H. Chen (2011), Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, this issue, 885–889.

    Google Scholar 

  • Maruyama T., Tsugawa T., Kato H., Saito A., Otsuka Y., Nishioka M., (2011), Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63, 69–873.

    Google Scholar 

  • Métois, et al., (2013), Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys. J. Int., 194, 1283–1294.

    Google Scholar 

  • Nava B., Radicella S.M., Leitinger R., Coisson P., (2007), Use of total electron content data to analyze ionosphere electron density gradients, Advances in Space Research, 39, 1292–1297.

    Google Scholar 

  • Okada Y., (1992), Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 82(2), 1018–1040.

    Google Scholar 

  • Occhipinti G., Oorey P., Farges T., Lognonné P., (2010), Nostradamus: The radar that wanted to be a seismometer. Geophys. Res. Lett., 37, L18104, doi:10.1029/2010GL044009.

  • Ogawa T., Nishitani N., Tsugawa T., Shiokawa K., (2012), Giant ionospheric disturbances observed with the Super DARN Hokkaido HF radar and GPS network after the 2011 Tohoku earthquake. Earth Planets Space, 64, 1295–1307.

    Google Scholar 

  • Ozeki, M. and K. Heki (2010), Ionospheric holes made by ballistic missiles from North Korea detected with a Japanese dense GPS array, J. Geophys. Res., 115, A09314, doi:10.1029/2010JA015531.

  • Pulinets, S. (2004), Ionospheric precursors of earthquakes; Recent advances in theory and practical applications, Terr. Atmos. Oceanic Sci., 15, 413–435.

    Google Scholar 

  • Reddy, C.D., A.S. Sunil, G.González, Mahesh N.Shrivastava, Marcos Moreno (2015), Near-field co-seismic ionospheric response due to the northern Chile Mw 8.1 Pisagua earthquake on April 1, 2014 from GPS observations. J. Atmos. Sol. Terr. Phys., 134, 1–8.

    Google Scholar 

  • Reddy, C. D., and G. K. Seemala (2015), Two-mode ionospheric response and Rayleigh wave group velocity distribution reckoned from GPS measurement following Mw 7.8 Nepal earthquake on 25 April 2015. J. Geophys. Res., 120, doi:10.1002/2015JA021502.

  • Rolland, L. M., P. L;ognonne, and H. Munekane, (2011), Detection and modeling of Rayleigh wave induced patterns in the ionosphere, J. Geophys. Res., 116, A05320, doi:10.1029/2010JA016060.

  • Row R. V., (1967), Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res., 72, 1599–1610.

    Google Scholar 

  • Sagiya T., (2004), A decade of GEONET: 1994–2003 The continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space, 56, 29–41.

    Google Scholar 

  • Saito A., Nishimura M., Yamamoto N., et al., (2001), Traveling ionospheric disturbances detected in the FRONT campaign. Geophys. Res. Lett., 28, 689–692.

    Google Scholar 

  • Saito, A., Tsugawa, T., Otsuka, Y., Nishioka, M., Iyemori, T., Matsumura, M., aito, S., Nhen, C.H., Goi, Y., and Choosakul, N., (2011), Acoustic resonance and plasma depletion detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63, 863–867 (this issue).Choosakul

    Google Scholar 

  • Sardón, E., and N. Zarraoa (1997), Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases?. Radio Sci., 32(5), 1899–1910, doi:10.1029/97RS01457.

  • Schurr et al., (2014), Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake, Nature 512, 299–302, doi:10.1038/nature13681.

  • Seemala, G. K., and C. E. Valladares, (2011), Statistics of total electron content depletions observed over the South American continent for the year 2008, Radio Sci., 46, RS5019, doi:10.1029/2011RS004722.

  • Sunil,A.S, Mala S Bagiya, C.D. Reddy, Ranish Kumar and D.S. Ramesh, (2015), Post-seismic ionospheric response to the 11 April 2012 East Indian Ocean doublet earthquake. Earth, Planets and Space, 67:37, doi:10.1186/s40623-015-0200-8.

  • Tsai H. F., Liu J. Y., Lin C. H., Chen C. H., (2011), Tracking the epicenter and the tsunami origin with GPS ionosphere observation. Earth Planets Space, 63, 859–862.

    Google Scholar 

  • Toda S., Stein R. S., Richards-Dinger K., Bozkurt S., (2005), Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res., B05S16, doi:10.1029/2004JB003415.

  • Valladares, C. E., J. Villalobos, M. A. Hei, R. Sheehan, S. Basu, E.MacKenzie, P. H. Doherty, and V. H. Rios (2009), Simultaneous observation of travelling ionospheric disturbances in the Northern and Southern Hemispheres. Ann. Geophys., 27, 1501–1508, doi:10.5194/angeo-27-1501-2009.

  • Ye, L., Thorne Lay, Hiroo Kanamori, and Keith D. Koper, (2015), Rapidly Estimated Seismic Source Parameters for the 16 September 2015 Illapel, Chile Mw 8.3 Earthquake, Pure and Applied Geophysics, doi:10.1007/s00024-015-1202.

Download references

Acknowledgments

The authors thank the Centro Sismolo´gico Nacional (CSN) and FONDECYT N° 1151175 for making available the GPS data. Mahesh N. Shrivastava and Gabriel Gonzalez thank the Grant CONICYT/FONDAP 15110017 for research funding. The authors also thank respective Institute’s directors for their encouragement in carrying out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Reddy, C.D., Shrivastava, M.N., Seemala, G.k., González, G., Baez, J.C. (2017). Ionospheric Plasma Response to M w 8.3 Chile Illapel Earthquake on September 16, 2015. In: Braitenberg, C., Rabinovich, A. (eds) The Chile-2015 (Illapel) Earthquake and Tsunami. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-57822-4_12

Download citation

Publish with us

Policies and ethics