Skip to main content

Landsat Surface Temperature Data Analysis for Urban Heat Resilience: Case Study of Adelaide

  • Chapter
  • First Online:
Planning Support Science for Smarter Urban Futures (CUPUM 2017)

Abstract

Smarter urban futures require resilient built environment in the context of climate change . This chapter demonstrates the application of satellite -based surface cover and temperature data to support planning for urban heat resilience . Landsat 7 ETM+ and Landsat 8 data is used to analyse the correlation of urban surface covers to the urban heat island effect in Adelaide. Methods for data source selection, surface cover classification, surface temperature calculation and analysis are detailed in this chapter. Results indicate that tree canopy and surface water covers had the least surface temperature variations in mesoscale. The average minimum surface temperature of tree canopy cover was 2.79 °C lower than asphalt and 4.74 °C lower than paved areas. Freely available satellite urban surface temperature data can assist urban planning authorities in planning heat resilient urban spaces for smarter urban futures in the context of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bosselmann, P. (2008). Urban transformation: Understanding City Design and Form. Washington DC: Island Press.

    Google Scholar 

  • Coll, C., Galve, J. M., Sanchez, J. M., & Caselles, V. (2010). Validation of Landsat-7/ETM+ Thermal-Band Calibration and Atmospheric Correction With Ground-Based Measurements. Geoscience and Remote Sensing, 48(1), 547–555. doi:10.1109/TGRS.2009.2024934.

    Article  Google Scholar 

  • Coutts, A., Beringer, J., & Tapper, N. J. (2007). Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. Journal of Applied Meteorology and Climatology, 46(4), 477–493. doi:10.1175/JAM2462.1.

    Article  Google Scholar 

  • CSIRO. (2007). Climate change in Australia: Technical report csiro and australian bureau of meteorology, Aspendale VIC.

    Google Scholar 

  • DESA. (2014). World urbanization prospects: Highlights. United Nations New York.

    Google Scholar 

  • Erell, E., Pearlmutter, D., & Williamson, T. (2011). Urban microclimate: Designing the spaces between buildings. London: Earthscan.

    Google Scholar 

  • Gartland, L. (2008). Heat Islands: Understanding and mitigating heat in urban areas. Washington, DC: Earthscan.

    Google Scholar 

  • Guest, C. S., Willson, K., Woodward, A. J., Hennessy, K., Kalkstein, L. S., Skinner, C., et al. (1999). Climate and mortality in Australia: Retrospective study, 1979–1990, and predicted impacts in five major cities in 2030. Climate Research, 13(1), 1–15.

    Article  Google Scholar 

  • Ichinose, T., Matsumoto, F. & Kataoka, K. (2008). Counteracting urban heat islands in Japan. In: D. Peter (Ed.), Urban energy transition: From fussil fuels to renewable power (pp. 365–380). Amsterdam: Elsevier. http://dx.doi.org/10.1016/B978-0-08-045341-5.00015-3.

  • Landsat 7 ETM+ (2014).

    Google Scholar 

  • Landsat 8 (2014).

    Google Scholar 

  • Li, F., Jackson, T.J., Kustas, W.P., Schmugge, T.J., French, A.N., Cosh, M.H. & Bindlish, R. (2004). Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sensing of Environment, 92(4), 521–534. http://dx.doi.org/10.1016/j.rse.2004.02.018.

  • Nichol, J.E. (1996). High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. Journal of Applied Meteorology, 35(1), 135–146. 10.1175/1520-0450(1996)035<0135:HRSTPR>2.0.CO; 2.

  • OECD. (2010). Cities and Climate Change. Paris: Organisation for Economic Cooperation and Development.

    Google Scholar 

  • Oke, T. R. (1987). Boundary layer climates (2nd ed.). New York: Wiley.

    Google Scholar 

  • Oke, T. R. (1988). The urban energy balance. Progress in Physical Geography, 12(4), 471–508. doi:10.1177/030913338801200401.

    Article  Google Scholar 

  • Oke, T. R. (2006). Initial guidance to obtain representative meteorological observations at urban sites: Instruments and observing methods. IOM Report No. 81. Canada: World Meteorological Organization.

    Google Scholar 

  • Santamouris, M., Gaitani, N., Spanou, A., Saliari, M., Giannopoulou, K., Vasilakopoulou, K. & Kardomateas, T. (2012). Using cool paving materialsto improve microclimate of urban areas—design realization and results of the flisvos project. Building and Environment, 53(0), 128–136. http://dx.doi.org/10.1016/j.buildenv.2012.01.022.

  • Santamouris, M., & Kolokosta, D. D. (2015). Urban microclimates: Mitigaing urban heat. In S. Lehmann (Ed.), Low carbon cities (pp. 282–292). New York: Routledge.

    Google Scholar 

  • Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85(12), 3085–3102.

    Article  Google Scholar 

  • SoAC. (2014–2015). State of Australian Cities. Canberra: Department of Infrastructure and Transport, Commonwealth of Australia, Major Cities Unit.

    Google Scholar 

  • Stone, B. (2012). City and the coming climate: Climate change in the places we live. New York: Cambridge University Press.

    Book  Google Scholar 

  • Tapper, N. J. (1990). Urban influences on boundary-layer temperature and humidity—results from Christchurch, New-Zealand. Atmospheric Environment Part B-Urban Atmosphere, 24(1), 19–27.

    Article  Google Scholar 

  • UN-Habitat. (2014). Planning for climate change. A strategic values-based approach for urban planners. London: Cities and Climate Change United Nations Human Settlements Programme.

    Google Scholar 

  • UNECE. (2011). Climate neutral cities: How to make cities less energy and carbon intensive and more resilient to climatic challenges. New York and Geneva: United Nations Economic Commission for Europe.

    Google Scholar 

  • Voogt, J.A. & Oke, T.R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. http://dx.doi.org/10.1016/S0034-4257(03)00079-8.

  • Weng, Q., Lu, D. & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. http://dx.doi.org/10.1016/j.rse.2003.11.005.

  • Wong, N. H., & Jusuf, S. K. (2010). Study on the microclimate condition along a green pedestrian canyon in Singapore. Architectural Science Review, 53(2), 196–212.

    Article  Google Scholar 

  • Wong, N. H., Jusuf, S. K., & Tan, C. L. (2011). Integrated urban microclimate assessment method as a sustainable urban development and urban design tool. Landscape and Urban Planning, 100(4), 386–389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Sharifi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharifi, E., Sivam, A., Karuppannan, S., Boland, J. (2017). Landsat Surface Temperature Data Analysis for Urban Heat Resilience: Case Study of Adelaide. In: Geertman, S., Allan, A., Pettit, C., Stillwell, J. (eds) Planning Support Science for Smarter Urban Futures. CUPUM 2017. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-57819-4_24

Download citation

Publish with us

Policies and ethics