Skip to main content

States of Matter Algorithm Applied to Pattern Detection

  • Chapter
  • First Online:
Engineering Applications of Soft Computing

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 129))

  • 574 Accesses

Abstract

Pattern Detection (PD) plays an important role in several image processing applications such as feature tracking, object recognition, stereo matching and remote sensing. PD involves two critical aspects: similarity measurement and search strategy. The simplest available PD method finds the best possible coincidence between the images through an exhaustive computation of the Normalized cross-correlation (NCC) values (similarity measurement) for all elements of the source image (search strategy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunelli R (2009) Template matching techniques in computer vision: theory and practice. Wiley. ISBN: 978-0-470-51706-2

    Google Scholar 

  2. Hadi G, Mojtaba L, Hadi SY (2009) An improved pattern matching technique for lossy/lossless compression of binary printed Farsi and Arabic textual images. Int J Intell Comput Cybern 2(1):120–147

    Article  MathSciNet  MATH  Google Scholar 

  3. Krattenthaler W, Mayer KJ, Zeiler M (1994) Point correlation: a reduced-cost template matching technique. In: Proceedings of the first IEEE international conference on image processing, pp 208–212

    Google Scholar 

  4. Rosenfeld A, VanderBrug GJ (1977) Coarse-fine template matching. IEEE Trans Syst Man Cybern, SMC-7(2):104–107

    Google Scholar 

  5. Tanimoto SL (1981) Template matching in pyramids. Comput Graph Image Process 16(4):356–369

    Article  Google Scholar 

  6. Uenohara M, Kanade T (1997) Use of Fourier and Karhunen-Loeve decomposition for fast pattern matching with a large set of templates. IEEE Trans Pattern Anal Mach Intell 19(8):891–898

    Article  Google Scholar 

  7. Dong N, Wu C-H, Ip W-H, Chen Z-Q, Chan C-Y, Yung K-L (2011) An improved species based genetic algorithm and its application in multiple template matching for embroidered pattern inspection. Expert Syst Appl 38:15172–15182

    Article  Google Scholar 

  8. Liu F, Duana H, Deng Y (2012) A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image matching. Optik 123:1955–1960

    Article  Google Scholar 

  9. Wu C-H, Wang D-Z, Ip A, Wang D-W, Chan C-Y, Wang H-F (2009) A particle swarm optimization approach for components placement inspection on printed circuit boards. J Intell Manuf 20:535–549

    Article  Google Scholar 

  10. Duan H, Xu C, Liu S, Shao S (2010) Template matching using chaotic imperialist competitive algorithm. Pattern Recogn Lett 31:1868–1875

    Article  Google Scholar 

  11. Chen G, Low CP, Yang Z (2009) Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans Evol Comput 13(3):661–673

    Article  Google Scholar 

  12. Adra SF, Fleming PJ (2011) Diversity management in evolutionary many-objective optimization. IEEE Trans Evol Comput 15(2):183–195

    Article  Google Scholar 

  13. Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur J Oper Res 197:701–713

    Article  MATH  Google Scholar 

  14. Jin Y (2005) Comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9:3–12

    Article  Google Scholar 

  15. Jin Yaochu (2011) Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol Comput 1:61–70

    Article  Google Scholar 

  16. Branke J, Schmidt C (2005) Faster convergence by means of fitness estimation. Soft Comput 9:13–20

    Article  Google Scholar 

  17. Zhou Z, Ong Y, Nguyen M, Lim D (2005) A study on polynomial regression and gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm. IEEE congress on evolutionary computation (ECiDUE’05), Edinburgh, United Kingdom, 2–5 Sept 2005

    Google Scholar 

  18. Ratle A (2001) Kriging as a surrogate fitness landscape in evolutionary optimization. Artif Intell Eng Des Anal Manuf 15:37–49

    Article  Google Scholar 

  19. Lim D, Jin Y, Ong Y, Sendhoff B (2010) Generalizing surrogate-assisted evolutionary computation. IEEE Trans Evol Comput 14(3):329–355

    Article  Google Scholar 

  20. Ong Y, Lum K, Nair P (2008) Evolutionary algorithm with hermite radial basis function interpolants for computationally expensive adjoint solvers. Comput Optim Appl 39(1):97–119

    Article  MathSciNet  MATH  Google Scholar 

  21. Ceruti G, Rubin H (2007) Infodynamics: analogical analysis of states of matter and information. Inf Sci 177:969–987

    Article  Google Scholar 

  22. Debashish C, Dietrich S (2000) Principles of equilibrium statistical mechanics, 1° edn. Wiley-VCH

    Google Scholar 

  23. Yunus AC, Boles MA (2005) Thermodynamics: an engineering approach, 5 edn. McGraw-Hill

    Google Scholar 

  24. Frederick B, Eugene H. Schaum’s outline of college physics, 11th edn. McGraw-Hill

    Google Scholar 

  25. David SB, Roy E (1992) Turner Introductory statistical mechanics, 1° edn. Addison Wesley

    Google Scholar 

  26. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Article  MathSciNet  Google Scholar 

  27. Garcia S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J Heurist. doi:10.1007/s10732-008-9080-4

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita-Arimatea Díaz-Cortés .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Díaz-Cortés, MA., Cuevas, E., Rojas, R. (2017). States of Matter Algorithm Applied to Pattern Detection. In: Engineering Applications of Soft Computing. Intelligent Systems Reference Library, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-319-57813-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57813-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57812-5

  • Online ISBN: 978-3-319-57813-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics