Skip to main content

Clonal Selection Algorithm Applied to Circle Detection

  • Chapter
  • First Online:
Book cover Engineering Applications of Soft Computing

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 129))

Abstract

Automatic circle detection in digital images is considered an important and complex task for the computer vision community. Consequently, recently, a tremendous amount of research has been devoted to find an optimal circle detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brabazon A, O’Neill M (2006) Biologically inspired algorithms for financial modelling. Springer, Berlin

    MATH  Google Scholar 

  2. Chih-Chih L (2006) A novel image segmentation approach based on particle swarm optimization. IEICE Trans Fundam 89(1):324–327

    Google Scholar 

  3. Le Hégarat-Mascle S, Hégarat-Mascle L, Kallel A, Descombes X (2007) Ant colony optimization for image regularization based on a nonstationary markov modeling. IEEE Trans Image Process 16(3):865–878

    Article  MathSciNet  Google Scholar 

  4. Hammouche K, Diaf M, Siarry P (2008) Amultilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Underst 109:163–175

    Article  Google Scholar 

  5. Baştürk A, Günay E (2009) Efficient edge detection in digital images using a cellular neural network optimized by differential evolution algorithm. Expert Syst Appl 36(8):2645–2650

    Article  Google Scholar 

  6. da Fontoura Costa L, Marcondes Cesar R Jr (2001) Shape Análisis and classification. CRC Press, Boca Raton

    Google Scholar 

  7. Peura M, Iivarinen J (1997) Efficiency of simple shape descriptors. In: Arcelli C, Cordella LP, di Baja GS (eds) Advances in visual form analysis. World Scientific, Singapore, pp 443–451

    Google Scholar 

  8. Yuen H, Princen J, Illingworth J, Kittler J (1990) Comparative study of Hough transform methods for circle finding. Image Vis Comput 8(1):71–77

    Article  Google Scholar 

  9. Iivarinen J, Peura M, Sarela J, Visa A (1997) Comparison of combined shape descriptors for irregular objects. In: Proceedings of 8th British machine vision conference, Cochester, pp 430–439

    Google Scholar 

  10. Jones G, Princen J, Illingworth J, Kittler J (1990) Robust estimation of shape parameters. In: Proceedings of British machine vision conference, pp 43–48

    Google Scholar 

  11. Fischer M, Bolles R (1981) Random sample consensus: a paradigm to model fitting with applications to image analysis and automated cartography. CACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  12. Bongiovanni G, Crescenzi P (1995) Parallel simulated annealing for shape detection. Comput Vis Image Underst 61(1):60–69

    Article  Google Scholar 

  13. Roth G, Levine MD (1994) Geometric primitive extraction using a genetic algorithm. IEEE Trans Pattern Anal Mach Intell 16(9):901–905

    Article  Google Scholar 

  14. Muammar H, Nixon M (1989) Approaches to extending the Hough transform. In: Proceedings of international conference on acoustics, speech and signal processing ICASSP_89, vol 3, pp 1556–1559

    Google Scholar 

  15. Atherton TJ, Kerbyson DJ (1993) Using phase to represent radius in the coherent circle Hough transform. In: Proceedings of IEEE colloquium on the hough transform, IEE, London

    Google Scholar 

  16. Shaked D, Yaron O, Kiryati N (1996) Deriving stopping rules for the probabilistic Hough transform by sequential analysis. Comput Vis Image Underst 63:512–526

    Article  Google Scholar 

  17. Xu L, Oja E, Kultanen P (1990) A new curve detection method: randomized Hough transform (RHT). Pattern Recognit Lett 11(5):331–338

    Article  MATH  Google Scholar 

  18. Han JH, Koczy LT, Poston T (1993) Fuzzy Hough transform. In: Proceedings of 2nd international conference on fuzzy systems, vol 2, pp 803–808

    Google Scholar 

  19. Lu W, Tan JL (2008) Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (IRHT). Pattern Recogn 41(4):1268–1279

    Article  MATH  Google Scholar 

  20. Lutton E, Martinez P (1994) A genetic algorithm for the detection 2-D geometric primitives on images. In: Proceedings of the 12th international conference on pattern recognition, vol 1, pp 526–528

    Google Scholar 

  21. Yao J, Kharma N, Grogono P (2004) Fast robust GA-based ellipse detection. In: Proceedings of 17th international conference on pattern recognition ICPR-04, Cambridge, vol 2, pp 859–862

    Google Scholar 

  22. Ayala-Ramirez V, Garcia-Capulin CH, Perez-Garcia A, Sanchez-Yanez RE (2006) Circle detection on images using genetic algorithms. Pattern Recogn Lett 27:652–657

    Article  Google Scholar 

  23. Dasgupta S, Das S, Biswas A, Abraham A (2009) Automatic circle detection on digital images whit an adaptive bacterial forganging algorithm. Soft Comput. doi:10.1007/s00500-009-0508-z

    Google Scholar 

  24. Rosin PL (1997) Further five point fit ellipse fitting. In: Proceedings of 8th British machine vision conference, Cochester, pp 290–299

    Google Scholar 

  25. Goldsby GA, Kindt TJ, Kuby J, Osborne BA (2003) Immunology, 5th edn. Freeman, New York

    Google Scholar 

  26. de Castro LN, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer, London

    MATH  Google Scholar 

  27. Dasgupta D (2006) Advances in artificial immune systems. IEEE Comput Intell Mag 1(4):40–49

    Article  Google Scholar 

  28. Wang X, Gao XZ, Ovaska SJ (2004) Artificial immune optimization methods and applications—a survey. In: Proceedings of the IEEE international conference on systems, man, and cybernetics, The Hague, pp 3415–3420

    Google Scholar 

  29. de Castro LN, von Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6(3):239–251

    Article  Google Scholar 

  30. Ada GL, Nossal G (1987) The clonal selection theory. Sci Am 257:50–57

    Article  Google Scholar 

  31. Coello Coello CA, Cortes NC (2005) Solving multiobjective optimization problems using an artificial immune system. Genet Program Evolvable Mach 6:163–190

    Article  Google Scholar 

  32. Campelo F, Guimaraes FG, Igarashi H, Ramirez JA (2005) A clonal selection algorithm for optimization in electromagnetics. IEEE Trans Magn 41:1736–1739

    Article  Google Scholar 

  33. Weisheng D, Guangming S, Li Z (2007) Immune memory clonal selection algorithms for designing stack filters. Neurocomputing 70:777–784

    Article  Google Scholar 

  34. Gong M, Jiao L, Zhang L, Du H (2009) Immune secondary response and clonal selection inspired optimizers. Prog Nat Sci 19:237–253

    Article  Google Scholar 

  35. de Castro LN, Member, IEEE, Von Zuben FJ, Member, IEEE (2002) Learning and optimization using the clonal selection principle. In: IEEE transactions on evolutionary computation, special issue on artificial immune systems, vol 6, no 3, pp 239–251

    Google Scholar 

  36. Cutello V, Narzisi G, Nicosia G, Pavone M (2005) Clonal selection algorithms: a comparative case study using effective mutation potentials. In: Jacob C et al (eds) ICARIS 2005, LNCS 3627, pp 13–28

    Google Scholar 

  37. Gong M, Jiao L, Zhang X (2008) A population-based artificial immune system for numerical optimization. Neurocomputing 72:149–161

    Article  Google Scholar 

  38. Gao X, Wang X, Ovaska S (2009) Fusion of clonal selection algorithm and differential evolution method in training cascade-correlation neural network. doi:10.1016/j.neucom.2008.11.004

  39. Poli R, Langdon WB (2002) Foundations of genetic programming. Springer, Berlin

    MATH  Google Scholar 

  40. Yoo J, Hajela P (1999) Immune network simulations in multicriterion design. Struct Optim 18(2–3):85–94

    Article  Google Scholar 

  41. Wang X, Gao XZ, Ovaska SJ (2005) A hybrid optimization algorithm in power filter design. In: Proceedings of the 31st annual conference of the IEEE industrial electronics society, Raleigh, November 2005, pp 1335–1340

    Google Scholar 

  42. Xu X, Zhang J (2007) An improved immune evolutionary algorithm for multimodal function optimization. In: Proceedings of the third international conference on natural computation, Haikou, August 2007, pp 641–646

    Google Scholar 

  43. Tang T, Qiu J (2006) An improved multimodal artificial immune algorithm and its convergence analysis. In: Proceedings of the sixth world congress on intelligent control and automation, Dalian, June 2006, pp 3335–3339

    Google Scholar 

  44. Bresenham JE (1987) A linear algorithm for incremental digital display of circular arcs. Commun ACM 20:100–106

    Article  MATH  Google Scholar 

  45. Van Aken JR (1984) An efficient ellipse drawing algorithm. CG&A 4(9):24–35

    Google Scholar 

  46. Chen T-C, Chung K-L (2001) An eficient randomized algorithm for detecting circles. Comput Vis Image Underst 83:172–191

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita-Arimatea Díaz-Cortés .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Díaz-Cortés, MA., Cuevas, E., Rojas, R. (2017). Clonal Selection Algorithm Applied to Circle Detection. In: Engineering Applications of Soft Computing. Intelligent Systems Reference Library, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-319-57813-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57813-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57812-5

  • Online ISBN: 978-3-319-57813-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics