Skip to main content

Small Union with Large Set of Centers

  • Conference paper
  • First Online:
Recent Developments in Fractals and Related Fields (FARF3 2015)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

Abstract

Let \(T \subset \mathbb{R}^{n}\) be a fixed set. By a scaled copy of T around \(x \in \mathbb{R}^{n}\) we mean a set of the form x + rT for some r > 0. In this survey paper we study results about the following type of problems: How small can a set be if it contains a scaled copy of T around every point of a set of given size? We will consider the cases when T is circle or sphere centered at the origin, Cantor set in \(\mathbb{R}\), the boundary of a square centered at the origin, or more generally the k-skeleton (0 ≤ k < n) of an n-dimensional cube centered at the origin or the k-skeleton of a more general polytope of \(\mathbb{R}^{n}\). We also study the case when we allow not only scaled copies but also scaled and rotated copies and also the case when we allow only rotated copies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourgain, J.: Averages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69–85 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain, J.: The discretized sum-product and projection theorems. J. Anal. Math. 112, 193–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, A., Csörnyei, M., Héra, K., Keleti, T.: Minimal Hausdorff dimension of the union of k-skeletons (in preparation). arXiv:1701.01405

    Google Scholar 

  4. Davies, R.O., Marstrand, J.M., Taylor, S.J.: On the intersections of transforms of linear sets. Colloq. Math. 7, 237–243 (1959/1960)

    MathSciNet  Google Scholar 

  5. Elekes, G.: Sums versus products in number theory, algebra and Erdős geometry, In: Halász, G. (ed.) Paul Erdős and His Mathematics, II (Budapest, 1999), vol. 11, pp. 241–290. János Bolyai Society Mathematical Studies, Budapest (2002)

    Google Scholar 

  6. Falconer, K.J.: Sets with large intersection properties. J. Lond. Math. Soc. 49, 267–280 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Falconer, K.J., Mattila, P.: Strong Marstrand theorems and dimensions of sets formed by subsets of hyperplanes. J. Fractal Geom. 3, 319–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Héra, K., Keleti, T., Máthé, A.: Hausdorff dimension of union of affine subspaces (in preparation). arXiv:1701.02299

    Google Scholar 

  9. Hochman, M.: Some problems on the boundary of fractal geometry and additive combinatorics. In: Barral, J., Seuret, S. (eds.) Recent Developments in Fractals and Related Fields. Trends in Mathematics. Springer International Publishing, New York (2017). doi:10.1007/978-3-319-57805-7_9

    Google Scholar 

  10. Katona, G.: A theorem of finite sets. In: Theory of Graphs, pp. 187–207. Akadémiai Kiadó, Budapest (1968)

    Google Scholar 

  11. Keleti, T., Nagy, D.T., Shmerkin, P.: Squares and their centers. J. Anal. Math. (to appear)

    Google Scholar 

  12. Kruskal, J.B.: The number of simplices in a complex. In: Mathematical Optimization Techniques, pp. 251–278. University of California Press, Oakland CA (1963)

    Google Scholar 

  13. Łaba, I., Pramanik, M.: Maximal operators and differentiation theorems for sparse sets. Duke Math. J. 158, 347–411 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  15. Marstrand, J.M.: Packing circles in the plane, Proc. Lond. Math. Soc. (3) 55, 37–58 (1987)

    Google Scholar 

  16. Máthé, A.: (manuscript to be written)

    Google Scholar 

  17. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  18. Mitsis, T.: On a problem related to sphere and circle packing. J. Lond. Math. Soc. (2) 60, 501–516 (1999)

    Google Scholar 

  19. Stein, E.: Maximal functions: spherical means. Proc. Natl. Acad. Sci. U. S. A. 73, 2174–2175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Szemerédi, E., Trotter, W.T.: Extremal problems in discrete geometry. Combinatorica 3, 381–392 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Talagrand, M.: Sur la mesure de la projection d’un compact et certaines families de cercles. Bull. Sci. Math. (2) 104, 225–231 (1980)

    Google Scholar 

  22. Thornton, R.: Cubes and their centers. Acta Math. Hungar. (to appear)

    Google Scholar 

  23. Wolff, T.: A Kakeya-type problem for circles. Am. J. Math. 119, 985–1026 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wolff, T.: Local smoothing type estimates on L p for large p. Geom. Funct. Anal. 10, 1237–1288 (2000)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to András Máthé for helpful discussions and for checking the paper very carefully.

This research was supported by Hungarian Scientific Foundation grant no. 104178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Keleti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Keleti, T. (2017). Small Union with Large Set of Centers. In: Barral, J., Seuret, S. (eds) Recent Developments in Fractals and Related Fields. FARF3 2015. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-57805-7_9

Download citation

Publish with us

Policies and ethics