Skip to main content

A Survey on the Dimension Theory in Dynamical Diophantine Approximation

  • Conference paper
  • First Online:
Recent Developments in Fractals and Related Fields (FARF3 2015)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

Abstract

Dynamical Diophantine approximation studies the quantitative properties of the distribution of the orbits in a dynamical system. More precisely, it focuses on the size of dynamically defined limsup sets in the sense of measure and dimension. This quantitative study is motivated by the qualitative nature of the density of the orbits and the connections with the classic Diophantine approximation. In this survey, we collect some recent progress on the dimension theory in dynamical Diophantine approximation. This includes the systems of rational maps on its Julia set, linear map on the torus, beta dynamical system, continued fractions as well as conformal iterated function systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, A., Schmidt, W.: Diophantine approximation and Hausdorff dimension. Proc. Lond. Math. Soc. 21(3), 1–11 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barral, J., Seuret, S.: Heterogeneous ubiquitous systems in \(\mathbb{R}^{d}\) and Hausdorff dimension. Bull. Braz. Math. Soc. (N.S.) 38(3), 467–515 (2007)

    Google Scholar 

  3. Barreira, L., Saussol, B.: Hausdorff dimension of measures via Poincaré recurrence. Commun. Math. Phys. 219(2), 443–463 (2001)

    Article  MATH  Google Scholar 

  4. Barreira, L., Saussol, B.: Product structure of Poincaré recurrence. Ergodic Theory Dynam. Syst. 22(1), 33–61 (2002)

    Article  MATH  Google Scholar 

  5. Beresnevich, V., Velani, S.: A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures. Ann. Math. (2) 164(3), 971–992 (2006)

    Google Scholar 

  6. Bernik, V.I., Dodson, M.: Metric Diophantine Approximation on Manifolds. Cambridge Tracts in Mathematics, vol. 137. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  7. Bonanno, C., Isola, S., Galatolo, S.: Recurrence and algorithmic information. Nonlinearity 17, 1057–1574 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boshernitzan, M.: Quantitative recurrence results. Invent. Math. 113, 617–631 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bugeaud, Y.: A note on inhomogeneous Diophantine approximation. Glasg. Math. J. 45(1), 105–110 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bugeaud, Y., Wang, B.: Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions. J. Fractal Geom. 1(2), 221–241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bugeaud, Y., Harrap, S., Kristensen, S., Velani, S.: On shrinking targets for \(\mathbb{Z}^{m}\) actions on tori. Mathematika 56(2), 193–202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chernov, N., Kleinbock, D.: Dynamical Borel-Cantelli lemma for Gibbs measures. Isr. J. Math. 122, 1–27 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dodson, M.: A note on metric inhomogeneous Diophantine approximation. J. Aust. Math. Soc. Ser. A 62, 175–185 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dodson, M., Melián, M., Pestana, D., Velani, S.: Patterson measure and ubiquity. Ann. Acad. Sci. Fenn. 20, 37–60 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Dolgopyat, D.: Limit theorems for partially hyperbolic systems. Trans. Am. Math. Soc. 356, 1637–1689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Falconer, K.: Fractal Geometry Mathematical Foundations and Applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  17. Fan, A., Wu, J.: A note on inhomogeneous Diophantine approximation with a general error function. Glasg. Math. J. 48(2), 187–191 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fan, A., Schemling, J., Troubetzkoy, S.: A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation. Proc. Lond. Math. Soc. 107(5), 1173–1219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fayad, B.: Mixing in the absence of the shrinking target property. Bull. Lond. Math. Soc. 38(5), 829–838 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fernández, J., Melián, M., Pestana, D.: Quantitative mixing results and inner functions. Math. Ann. 337, 233–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fernández, J., Melián, M., Pestana, D.: Quantitative recurrence properties of expanding maps. arXiv:math/0703222 (2007)

    Google Scholar 

  22. Fuchs, M., Kim, D.: On Kurzweil’s 0-1 law in inhomogeneous Diophantine approximation. Acta Arith. 173, 41–57 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Galatolo, S.: Dimension via waiting time and recurrence. Math. Res. Lett. 12(2-3), 377–386 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Galatolo, S.: Dimension and hitting time in rapidly mixing systems. Math. Res. Lett. 14(5), 797–805 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Galatolo, S., Kim, D.: The dynamical Borel-Cantelli lemma and the waiting time problems. Indag. Math. 18(3), 421–434 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Galatolo, S., Nisoli, I.: Shrinking targets in fast mixing flows and the geodesic flow on negatively curved manifolds. Nonlinearity 24(11), 3099–3113 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ge, Y., F. Lü, F.: A note on inhomogeneous Diophantine approximation in beta-dynamical system. Bull. Aust. Math. Soc. 91(1), 34–40 (2015)

    Google Scholar 

  28. Hill, R., Velani, S.: The ergodic theory of shrinking targets. Invent. Math. 119, 175–198 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hill, R., Velani, S.: Metric Diophantine approximation in Julia sets of expanding rational maps. Inst. Hautes Etudes Sci. Publ. Math. 85, 193–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hill, R., Velani, S.: The Jarnik-Besicovitch theorem for geometrically finite Kleinian groups. Proc. Lond. Math. Soc. 77(3), 524–550 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hill, R., Velani, S.: The shrinking target problem for matrix transformations of tori. J. Lond. Math. Soc. (2) 60, 381–398 (1999)

    Google Scholar 

  32. Hill, R., Velani, S.: A zero-infinity law for well-approximable points in Julia sets. Ergodic Theory Dynam. Syst. 22(6), 1773–1782 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hirata, M., Saussol, B., Vaienti, S.: Statistics of return times: a general framework and new applications. Commun. Math. Phys. 206(1), 33–55 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jarník, V.: Über die simultanen diophantischen Approximationen. Math. Z. 33, 505–543 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kahane, J.P.: Some Random Series of Functions. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  36. Khintchine, A.Ya.: Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92(1-2), 115–125 (1924)

    Google Scholar 

  37. Khintchine, A.Ya.: Continued Fractions. P. Noordhoff, Groningen (1963)

    Google Scholar 

  38. Kim, D.: The dynamical Borel-Cantelli lemma for interval maps. Discrete Contin. Dyn. Syst. 17, 891–900 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kim, D.: The shrinking target property of irrational rotations. Nonlinearity 20(7), 1637–1643 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kurzweil, J.: On the metric theory of inhomogeneous Diophantine approximations. Stud. Math. 15, 84–112 (1955)

    MathSciNet  MATH  Google Scholar 

  41. Levesley, J.: A general inhomogeneous Jarník-Besicovitch theorem. J. Number Theory 71, 65–80 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, B., Persson, T., Wang, B., Wu, J.: Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions. Math. Z. 276, 799–827 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, B., Wang, B., Wu, J., Xu, J.: The shrinking target problem in the dynamical system of continued fractions. Proc. Lond. Math. Soc. (3) 108, 159–186 (2014)

    Google Scholar 

  44. Liao, L., Rams, M.: Inhomogeneous Diophantine approximation with general error functions. Acta Arith. 160(1), 25–35 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liao, L., Seuret, S.: Diophantine approximation of orbits in expanding Markov systems. Ergodic Theory Dynam. Syst. 33(2), 585–608 (2013)

    Article  MATH  Google Scholar 

  46. Lü, F., Wu, J.: Diophantine analysis in beta-dynamical systems and Hausdorff dimensions. Adv. Math. 290, 919–937 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  48. Minkowski, H.: Diophantische Approximationen. Eine Einführung in die Zahlentheorie. Chelsea Publishing Co., New York (1957)

    MATH  Google Scholar 

  49. Parry, W.: On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11, 401–416 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  50. Persson, T., Schmeling, J.: Dyadic Diophantine approximation and Katok’s horseshoe approximation. Acta Arith. 132, 205–230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Philipp, W.: Some metrical theorems in number theory. Pac. J. Math. 20, 109–127 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  52. Revee, H.: Shrinking targets for countable Markov maps. arXiv: 1107.4736 (2011)

    Google Scholar 

  53. Rousseau, J., Saussol, B.: Poincaré recurrence for observations. Trans. Am. Math. Soc. 362(11), 5845–5859 (2010)

    Article  MATH  Google Scholar 

  54. Saussol, B.: Recurrence rate in rapidly mixing dynamical systems. Discrete Contin. Dyn. Syst. 15(1), 259–267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Saussol, B.: An introduction to quantitative Poincaré recurrence in dynamical systems. Rev. Math. Phys. 21(8), 949–979 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Saussol, B., Troubetzkoy, S., Vaienti, S.: Recurrence, dimensions, and Lyapunov exponents. J. Stat. Phys. 106(3-4), 623–634 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Schmeling, J.: Symbolic dynamics for β-shifts and self-normal numbers. Ergodic Theory Dynam. Syst. 17, 675–694 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  58. Schmeling, J., Troubetzkoy, S.: Inhomogeneous Diophantine approximations and angular recurrence for billiards in polygons. Mat. Sb. 194(2), 129–144 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  59. Seuret, S., Wang, B.: Quantitative recurrence properties in conformal iterated function systems. Adv. Math. 280, 472–505 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Shen, L., Wang, B.: Shrinking target problems in the beta-dynamical system. Sci. China Math. 56(1), 91–104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Sprindz̆uk, V.G.: Metric Theory of Diophantine Approximation (translated by R.A. Silverman). V. H. Winston and Sons, Washington, DC (1979)

    Google Scholar 

  62. Stratmann, B.: Fractal dimensions for the JarnÍk limit sets of geometrically finite Kleinian groups; the semi-classical approach. Ark. Mat. 33, 385–403 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  63. Stratmann, B., Urbański, M.: Jarník and Julia; a Diophantine analysis for parabolic rational maps. Math. Scand. 91, 27–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  64. Stratmann, B., Urbański, M.: Metrical Diophantine analysis for tame parabolic iterated function systems. Pac. J. Math. 216(2), 361–392 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  65. Tan, B., Wang, B.: Quantitive recurrence properties of beta dynamical systems. Adv. Math. 228, 2071–2097 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tseng, J.: On circle rotations and the shrinking target properties. Discrete Contin. Dyn. Syst. 20(4), 1111–1122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Urbański, M.: Diophantine analysis of conformal iterated function systems. Monatsh. Math. 137(4), 325–340 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  68. Velani, S.: Diophantine approximation and Hausdorff dimension in Fuchsian groups. Math. Proc. Camb. Philos. Soc. 113, 343–354 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  69. Velani, S.: An application of metric Diophantine approximation in hyperbolic space to quadratic forms. Publ. Math. 38, 175–185 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  70. Velani, S.: Geometrically finite groups, Khintchine-type theorems and Hausdorff dimension. Math. Proc. Camb. Philos. Soc. 120, 647–662 (1996)

    Article  MATH  Google Scholar 

  71. Walters, P.: An Introduction to Ergodic Theory, GTM 79. Springer, New York/Berlin (1982)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (grant no. 11225101, 11471130) and NCET-13-0236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, B., Wu, J. (2017). A Survey on the Dimension Theory in Dynamical Diophantine Approximation. In: Barral, J., Seuret, S. (eds) Recent Developments in Fractals and Related Fields. FARF3 2015. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-57805-7_12

Download citation

Publish with us

Policies and ethics