Skip to main content

TXT-tool 4.385-1.1: Method for Prediction of Landslide Movements Based on Random Forests

  • Chapter
  • First Online:
Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools

Abstract

Prediction of landslide movements with practical application for landslide risk mitigation is a challenge for scientists. This study presents a methodology for prediction of landslide movements using random forests, a machine learning algorithm based on regression trees. The prediction method was established based on a time series consisting of 2 years of data on landslide movement, groundwater level and precipitation gathered from the Kostanjek landslide monitoring system and nearby meteorological stations in Zagreb (Croatia). Because of complex relations between precipitations and groundwater levels, the process of landslide movement prediction is divided into two separate models: (1) model for prediction of groundwater levels from precipitation data; and (2) model for prediction of landslide movements from groundwater level data. In a groundwater level prediction model, 75 parameters were used as predictors, calculated from precipitation and evapotranspiration data. In the landslide movement prediction model, 10 parameters calculated from groundwater level data were used as predictors. Model validation was performed through the prediction of groundwater levels and prediction of landslide movements for the periods from 10 to 90 days. The validation results show the capability of the model to predict the evolution of daily displacements, from predicted variations of groundwater levels, for the period up to 30 days. Practical contributions of the developed method include the possibility of automated predictions, updated and improved on daily basis, which would be an important source of information for decisions related to crisis management in the case of risky landslide movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baird KJ, Maddock T III (2005) Simulating riparian evapotranspiration: a new methodology and application for groundwater models. J Hydrol 312(1–4):176–190. doi:10.1016/j.jhydrol.2005.02.014

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5:853–862

    Article  Google Scholar 

  • Calvello M, Cascini L, Sorbino G (2008) A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfaces. Int J Numer Anal Methods Geomech 32(4):327–351. doi:10.1002/nag.624

    Article  Google Scholar 

  • Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, pp 161–168. doi:10.1145/1143844.1143865

  • Cascini L, Calvello M, Grimaldi G (2010) Groundwater modeling for the analysis of active slow-moving landslides. J Geotech Geoenviron Eng 136(9):1220–1230

    Article  Google Scholar 

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831. doi:10.5194/nhess-13-2815-2013

    Article  Google Scholar 

  • Chen X-W, Liu M (2005) Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21(24):4394–4400

    Google Scholar 

  • Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2003) Failure forecast for large rock slide by surface displacement measurements. Can Geotech J 40(1):176–191

    Article  Google Scholar 

  • Crosta G, Di Prisco C (1999) On slope instability induced by seepage erosion. Can Geotech J 36:1056–1073

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslide investigation and mitigation (Special Report/ Transportation Research Board, National Research Council; 247). National Academy Press, Washington DC, Chapter 3, pp 36–75

    Google Scholar 

  • Díaz-Uriarte R, de Andrés SA (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7:1471–2105

    Google Scholar 

  • Federico A, Popescu M, Elia G, Fidelibus C, Internò G, Murianni A (2012) Prediction of time to slope failure: a general framework. Environ Earth Sci 66:245–256. doi:10.1007/s12665-011-1231-5

    Article  Google Scholar 

  • Fukuzono T (1985) A new method for predicting the failure time of a slope. In: Proceedings of the 4th international conference and field workshop on landslides, Tokyo (Japan), pp 145–150

    Google Scholar 

  • Gajić-Čapka M, Zaninović K (2008) Climate of Croatia. In: Zaninović K (ed) Climate atlas of Croatia, 1961–1990 and 1971–2000. Croatian Meteorological and Hydrological Service, Zagreb, pp 15–17

    Google Scholar 

  • Ghiassian H, Ghareh S (2008) Stability of sandy slopes under seepage conditions. Landslides 5:397–406. doi:10.1007/s10346-008-0132-5

    Article  Google Scholar 

  • Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random forests for land cover classification. Pattern Recogn Lett 27(4):294–300

    Article  Google Scholar 

  • Godt JW, Baum RL, Lu N (2009) Landsliding in partially saturated materials. Geophys Res Lett. doi:10.1029/2008GL035996

    Google Scholar 

  • Goetz JN, Brenning A, Petschko H, Leopold P (2015) Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci 81:1–11. doi:10.1016/j.cageo.2015.04.007

    Article  Google Scholar 

  • Ham J, Chen Y, Crawford M, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43:492–501

    Article  Google Scholar 

  • Hodgson FDI (1978) The use of multiple linear regression in simulating ground-water level responses. Ground Water 16(4):249–253

    Article  Google Scholar 

  • Hong Y-M, Wan S (2011) Forecasting groundwater level fluctuations for rainfall-induced landslide. Nat Hazards 57:167–184. doi:10.1007/s11069-010-9603-9

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R (2014) An introduction to statistical learning with applications in R. Springer, New York

    Google Scholar 

  • Jan C-D , Chen T-H, Lo W-C (2007) Effect of rainfall intensity and distribution on groundwater level fluctuations. J Hydrol 332(3–4):348–360

    Google Scholar 

  • Krkač M (2015) A phenomenological model of the Kostanjek landslide movement based on the landslide monitoring parameters. Dissertation, University of Zagreb (in Croatian)

    Google Scholar 

  • Krkač M, Mihalić Arbanas S, Arbanas Ž, Bernat S, Špehar K, Watanabe N, Nagai O, Sassa K, Marui H, Furuya G, Wang C, Rubinić J, Matsunami K (2014a) Review of monitoring parameters of the Kostanjek Landslide (Zagreb, Croatia). In: Sassa K, Canuti P, Yin Y (eds) Proceedings of the 3rd World Landslide Forum ‘Landslide science for a safer geoenvironment’, vol 2. Methods of landslide studies. Springer, Dordrecht, pp 637–645

    Chapter  Google Scholar 

  • Krkač M, Mihalić Arbanas S, Nagai O, Arbanas Ž, Špehar K (2014b) The Kostanjek landslide—monitoring system development and sensor network. In: Mihalić Arbanas S, Arbanas Ž (eds) Proceedings of the 1st regional symposium on landslides in the Adriatic-Balkan region: landslide and flood hazard assessment. Croatian Landslide Group, Zagreb, pp 27–32

    Google Scholar 

  • Lebedev AV, Westman B, Van Westenc GJP, Kramberger MG, Lundervold A, Aarsland D, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S, Simmons A (2014) Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness. NeuroImage Clin 6:115–125

    Article  Google Scholar 

  • Lee LJE, Lawrence DSL, Price M (2006) Analysis of water-level response to rainfall and implications for recharge pathways in the Chalk aquifer, SE England. J Hydrol 330:604–620

    Article  Google Scholar 

  • Mansour MF, Morgenstern NR, Martin CD (2011) Expected damage from displacement of slow-moving slides. Landslides 8(1):117–131. doi:10.1007/s10346-010-0227-7

    Article  Google Scholar 

  • Martelloni G, Segoni S, Fanti R, Catani F (2011) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9:485–495. doi:10.1007/s10346-011-0308-2

    Article  Google Scholar 

  • Massey CI, Petley DN, McSaveney MJ (2013) Patterns of movement in reactivated landslides. Eng Geol 159:1–19

    Article  Google Scholar 

  • Matsuura S, Asano S, Okamoto T (2008) Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Eng Geol 101:49–59

    Article  Google Scholar 

  • Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A, Jaboyedoff M, Kanevski M (2014) Machine learning feature selection methods for landslide susceptibility mapping. Math Geosci 46:33–57. doi:10.1007/s11004-013-9511-0

    Article  Google Scholar 

  • Mihalić Arbanas S, Arbanas Ž, Krkač M (2013) Comprehensive landslide monitoring system: The Kostanjek landslide case study, Croatia. In: Sassa K, He B, McSaveney M, Osamu N (eds) ICL landslide teaching tools. International Consortium on Landslides, Kyoto, pp 158–168

    Google Scholar 

  • Ortolan Ž, Pleško J (1992) Repeated photogrammetric measurements at shaping geotechnical models of multi-layer landslides. Rudarsko-geološko-naftni zbornik 4:51–58

    Google Scholar 

  • Ortolan Ž (1996) Development of 3D engineering geological model of deep landslide with multiple sliding surffaces (Example of the Podsused Landslide). Disertation, University of Zagreb (in Croatian)

    Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26:217–222

    Article  Google Scholar 

  • Pauly O (2012) Random forests for medical applications. Dissertation, Technische Universität München

    Google Scholar 

  • Peters J, De Baets B, Verhoest NCA, Samson R, Degroeve S, De Becker P, Huybrechts W (2007) Random forests as a tool for ecohydrological distribution modelling. Ecol Model 207:304–318

    Article  Google Scholar 

  • Pourghasemi HR, Kerle N (2016) Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environ Earth Sci 75(185):1–17. doi:10.1007/s12665-015-4950-1

    Google Scholar 

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9(2):181–199

    Article  Google Scholar 

  • Saito M (1965) Forecasting the time of occurrence of a slope failure. In: Proceedings of the 6th international conference on soil mechanics and foundation engineering, vol 2, Montreal, pp 573–541

    Google Scholar 

  • Sassa K, Osamu N, Solidum R, Yamazaki Y, Ohta H (2010) An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide. Landslides 7:219–236. doi:10.1007/s10346-010-0230-z

    Article  Google Scholar 

  • Schilling KE (2009) Investigating local variation in groundwater recharge along a topographic gradient, Walnut Creek, Iowa, USA. Hydrogeol J 17:397–407

    Article  Google Scholar 

  • Segoni S, Lagomarsino D, Fanti R, Moretti S, Casagli N (2014) Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides 12(4):773–785. doi:10.1007/s10346-014-0502-0

    Article  Google Scholar 

  • Simoni A, Berti M, Generali M, Elmi C, Ghirotti M (2004) Preliminary result from pore pressure monitoring on an unstable clay slope. Eng Geol 73:117–128

    Article  Google Scholar 

  • Skempton AW (1985) Residual strength of clays in landslide, folded strata and the laboratory. Geotechnique 35(1):3–18

    Article  Google Scholar 

  • Stanić B, Nonveiller E (1996) The Kostanjek landslide in Zagreb. Eng Geol 42:269–283

    Article  Google Scholar 

  • Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using Random Forests. Remote Sens Environ 115:2564–2577. doi:10.1016/j.rse.2011.05.013

    Article  Google Scholar 

  • Trigila A, Iadanza C, Esposito C, Scarascia-Mugnozza G (2015) Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 249:119–136. doi:10.1016/j.geomorph.2015.06.001

    Article  Google Scholar 

  • Van Asch TWJ, Van Beek LPH, Bogaard TA (2007) Problems in predicting the mobility of slow-moving landslides. Eng Geol 91:46–55

    Article  Google Scholar 

  • Venables W N, Smith D M (2014) An introduction to R: a programming environment for data analysis and graphics version 3.1.2. http://www.r-project.org/. Accessed 17 Dec 2015

  • Vorpahl P, Elsenbeer H, Märker M, Schröder B (2012) How can statistical models help to determine driving factors of landslides? Ecol Model 239:27–39

    Article  Google Scholar 

  • Weinheimer A, Biondi F (2003) Varves. In: Holton JR, Curry JA, Pyle JA (eds) Encyclopedia of atmospheric sciences, vol 4. Academic Press, Oxford, pp 1680–1685

    Chapter  Google Scholar 

  • Wieczorek GF (1996) Landslide triggering mechanism. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation, special report, vol 247, no 4. Transportation Research Board. National Academy Press, Washington, pp 76–89

    Google Scholar 

  • Wu J, Zhang R, Yang J (1996) Analysis of precipitation-recharge relationships. J Hydrol 177:143–160

    Article  Google Scholar 

  • Yoon H, Jun S-C, Hyun Y, Bae G-O, Lee K-K (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396:128–138

    Article  Google Scholar 

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2015) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides. doi:10.1007/s10346-015-0614-1

    Google Scholar 

Download references

Acknowledgements

The results presented herein have been obtained with the financial support from JST/JICA’s SATREP Program. This support is gratefully acknowledged. The authors would also like to thank the Croatian Meteorological and Hydrological Service for the meteorological data. The authors are grateful to Ž. Arbanas and anonymous reviewers for their valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Krkač .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krkač, M., Špoljarić, D., Bernat Gazibara, S., Mihalić Arbanas, S. (2018). TXT-tool 4.385-1.1: Method for Prediction of Landslide Movements Based on Random Forests. In: Sassa, K., Tiwari, B., Liu, KF., McSaveney, M., Strom, A., Setiawan, H. (eds) Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools . Springer, Cham. https://doi.org/10.1007/978-3-319-57777-7_35

Download citation

Publish with us

Policies and ethics