Skip to main content

TXT-tool 4.039-3.1: Terrestrial Laser Scanner and Geomechanical Surveys for the Rapid Evaluation of Rock Fall Susceptibility Scenarios

  • Chapter
  • First Online:
Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools

Abstract

This paper is aimed at presenting a semiautomatic procedure that, coupled with conventional methods, can be useful for a prompt definition of rock fall susceptibility scenarios with civil protection purposes. Due to its landscape morphology (steep slopes and narrow valley), regional seismicity, and rock mass characteristics, the Nera Valley (Valnerina, Umbria Region, Italy) is highly prone to rock falls. In order to cover a wide range of features and investigate the main advantages and drawbacks of the proposed approach, data collection was carried out in three different slopes by means of terrestrial laser scanning (TLS) and geomechanical surveys. Detailed three-dimensional (3D) terrain models were reconstructed to obtain the geometry of the most unstable blocks, to define the position of the main rock fall source areas, and to precisely distinguish the outcropping materials and the position of the elements at risk for reliable runout analyses. Consequently, the proposed approach can positively support proper maintenance and land management programs both in ordinary and in emergency circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abellan A, Vilaplana JM, Martinez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Nuria (Eastern Pyrenees, Spain). Eng Geol 88(3):136–148

    Article  Google Scholar 

  • Abellan A, Vilaplana JM, Calvet J, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanning modelling. Geomorphology 119:162–171

    Article  Google Scholar 

  • Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471

    Article  Google Scholar 

  • Amato A, Azzara R, Chiarabba C, Cimini GB, Cocco M, Di Bona M, Margheriti L, Mazza S, Mele F, Selvaggi G, Basili A, Boschi E, Courboulex F, Deschamps A, Gaffet S, BittarelliG Chiaraluce L, Piccinini D, Ripepe M (1998) The 1997 Umbria–Marche, Italy, earthquake sequence: a first look at the main shocks and aftershocks. Geophys Res Lett 25:2861–2864

    Article  Google Scholar 

  • Antonini G, Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2002) Surface deposits and landslide inventory map of the area affected by the 1997 Umbria-Marche earthquakes. Boll Soc Geol Ital 121:843–853

    Google Scholar 

  • Armesto J, Ordóñez C, Alejano L, Arias P (2009) Terrestrial laser scanning used to determine the geometry of a granite boulder for stability analysis purposes. Geomorphology 106:271–277

    Article  Google Scholar 

  • Azzoni A, La Barbera G, Zaninetti A (1995) Analysis and prediction of rockfalls using a mathematical model. Int J Rock Mech Min Sci Geomech Abstr 32:709–724

    Article  Google Scholar 

  • Barchi M, Cardinali M, Guzzetti F, Lemmi M (1993) Relazioni fra movimenti di versante e fenomeni tettonici nell’area del M. Coscerno—M. di Civitella, Valnerina (Umbria). Boll Soc Geol Ital 112:83–111 (in Italian)

    Google Scholar 

  • Bauer A, Paar G, Kaltenbök A (2006) Mass movement monitoring using terrestrial laser scanner for rockfall management. In: van Oosterom P, Zlatanova S, Fendel EM (eds) Geo-information for disaster management. Stringer, Berlin, pp 393–406

    Google Scholar 

  • Carro M, De Amicis M, Luzi L, Marzorati S (2003) The application of predictive modeling techniques to landslides induced by earthquakes: the case study of the 26 September 1997 Umbria-Marche earthquake (Italy). Eng Geol 69:139–159

    Article  Google Scholar 

  • Casagli N, Pini G (1993) Analisi cinematica della stabilità di versanti naturali e fronti di scavo in roccia. Geol Appl Idrogeol 28:223–232 (in Italian)

    Google Scholar 

  • Descouedres F, Zimmermann TH (1987) Three-dimensional dynamic calculation of rockfalls. In: Proceedings of the sixth international congress of rock mechanics, Montreal, Canada, pp 337–342

    Google Scholar 

  • Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56:49–64

    Article  Google Scholar 

  • Evans SG, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  • Fanti R, Gigli G, Lombardi L, Tapete D, Canuti P (2012) Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides. doi:10.1007/s10346-012-0329-5

    Google Scholar 

  • Ferrero AM, Umili G (2011) Comparison of methods for estimating fracture size and intensity applied to Aiguille Marbrée (Mont Blanc). Int J Rock Mech Min Sci 48(8):1262–1270

    Article  Google Scholar 

  • Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:631–665

    Article  Google Scholar 

  • Ferrero AM, Migliazza M, Roncella R, Rabbi E (2011) Rock slopes risk assessment based on advanced geostructural survey techniques. Landslides 8:221–231

    Article  Google Scholar 

  • Giani GP (1992) Rock slope stability analysis. Balkema, Rotterdam

    Google Scholar 

  • Giani GP, Giacomini A, Migliazza M, Segalini A (2004) Experimental and theoretical studies to improve rock fall analysis and protection work design. Rock Mech Rock Eng 37:369–389

    Article  Google Scholar 

  • Gigli G, Casagli N (2011a) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48:187–198

    Article  Google Scholar 

  • Gigli G, Casagli N (2011b) Extraction of rock mass structural data from high resolution laser scanning products. In: Proceedings of 2nd world landslide forum, Rome, 3–7 October, 2011

    Google Scholar 

  • Gigli G, Frodella W, Mugnai F, Tapete D, Cigna F, Fanti R, Intrieri E, Lombardi L (2012) Instability mechanisms affecting cultural heritage sites in the Maltese Archipelago. Nat Hazards Earth Syst Sci 12:1883–1903. doi:10.5194/nhess-12-1883-2012

    Article  Google Scholar 

  • Goodman RE, Bray JW (1976) Toppling of rock slopes. In: ASCE specialty conference on rock engineering for foundations and slopes, Boulder Colorado, vol 2, pp 201–234

    Google Scholar 

  • Guzzetti F, Crosta GB, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28:1079–1093

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ghigi S (2004) Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, Central Italy. Environ Manag 34:191–208

    Article  Google Scholar 

  • Guzzetti F, Esposito E, Balducci V, Porfido S, Cardinali M, Violante C, Fiorucci F, Sacchi M, Ardizzone F, Mondini A, Reichenbach P, Rossi M (2009) Central Italy seismic sequence-induced landsliding: 1997–1998 Umbria-Marche and 2008–2009 l’Aquila cases. In: The next generation of research on earthquake-induced landslides: an international conference in commemoration of 10th anniversary of the Chi-Chi earthquake, pp 52–60

    Google Scholar 

  • Hoek E (2000) Practical rock engineering. www.rocscience.com

  • Hoek E, Bray JW (1981) Rock slope engineering. Revised third edition, Institute of Mining and Metallurgy, London

    Google Scholar 

  • Hudson JA, Harrison JP (1997) Engineering rock mechanics. Pergamon Press, Oxford, p 444

    Google Scholar 

  • Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can Geotech J 36:224–238

    Article  Google Scholar 

  • International Society for Rock Mechanics (ISRM)—Commission on The Standardization of Laboratory and Field Test (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron M, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28

    Article  Google Scholar 

  • Kemeny J, Post R (2003) Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Comput Geosci 29:65–77

    Article  Google Scholar 

  • Lan H, Martin CD, Lim CH (2007) RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput Geosci 33:262–279

    Article  Google Scholar 

  • Lan H, Martin CD, Zhou C, Lim CH (2010) Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology 118:213–223

    Article  Google Scholar 

  • Lato M, Vöge M (2012) Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. Int J Rock Mech Min Sci 54:150–158

    Google Scholar 

  • Lato M, Hutchinson J, Diederichs M, Ball D, Harrap R (2009) Engineering monitoring of rockfall hazards along transportation corridors: using mobile terrestrial LiDAR. Nat Hazards Earth Syst Sci 9:935–946

    Article  Google Scholar 

  • Lato M, Diederichs M, Hutchinson DJ (2010) Bias correction for static LiDAR scanning of rock outcrops for structural characterization. Rock Mech Rock Eng 43(5):615–628

    Article  Google Scholar 

  • Lato MJ, Diederichs MS, Hutchinson DJ (2012) Evaluating roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols. Nat Hazards 60:831–864

    Article  Google Scholar 

  • Lombardi L (2007) Nuove tecnologie di rilevamento e di analisi di dati goemeccanici per la valutazione della sicurezza. Ph.D. Thesis, Università degli studi di Firenze (in Italian)

    Google Scholar 

  • Marzorati S, Luzi L, De Amicis M (2002) Rock falls induced by earthquakes: a statistical approach. Soil Dyn Earthq Eng 22:565–577

    Article  Google Scholar 

  • Matheson GD (1989) The collection and use of field discontinuity data in rock slope design. Q J Eng Geol 22:19–30

    Article  Google Scholar 

  • Mikos M, Vidmar A, Brilly M (2005) Using a laser measurement system for monitoring morphological changes on the Strug rock fall, Slovenia. Nat Hazard Earth Syst Sci 5:143–153

    Article  Google Scholar 

  • Morelli S, Segoni S, Manzo G, Ermini L, Catani F (2012) Urban planning, flood risk and public policy: the case of the Arno River, Firenze, Italy. Appl Geogr 34:205–218

    Article  Google Scholar 

  • Palmstrom A (2005) Measurement of correlations between block size and rock quality designation (RQD). Tunn Undergr Space Technol 20:362–377

    Article  Google Scholar 

  • Pfeiffer TJ, Bowen T (1989) Computer simulation of rockfalls. Bull Assoc Eng Geol 26:135–146

    Google Scholar 

  • Piteau DR, Clayton R (1976) Computer rockfall model. In: Proceedings of the meeting on rockfall dynamics and protective works effectiveness, Bergamo, Italy, ISMES Publication No. 90, pp 123–125

    Google Scholar 

  • Ritchie AM (1963) Evaluation of rockfall and its control. Highw Res Rec 17:13–28

    Google Scholar 

  • Rocscience (2005) RocFall software for risk analysis of falling rocks on steep slopes. Ver. 4.0. User’s Guide

    Google Scholar 

  • Rosser NJ, Dunning SA, Lim M, Petley DN (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q J Eng Geol Hydrogeol 38:363–375

    Article  Google Scholar 

  • Strouth A, Eberhardt E (2005) The use of LiDAR to overcome rock slope hazard data collection challenges at Afternoon Creek, Washington. In: 41st US symposium on rock mechanics, Golden, Colorado. American Rock Mechanics Association

    Google Scholar 

  • Tapete D, Gigli G, Mugnai F, Vannocci P, Pecchioni E, Morelli S, Fanti R, Casagli N (2012) Correlation between erosion patterns and rockfall hazard susceptibility in hilltop fortifications by terrestrial laser scanning and diagnostic investigations. In: IEEE international geoscience and remote sensing symposium. Remote sensing for a dynamic earth. Munich, Germany, 22–27 July 2012, pp 4809–4812. ISBN 978-1-4673-1159-5

    Google Scholar 

  • Wickens EH, Barton NR (1971) The application of photogrammetry to the stability of excavated rock slopes. Photogram Rec 7(37):46–54

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out within a research contract between the Department of Civil and Environmental Engineering of the University of Perugia and the Department of Earth Sciences, University of Firenze. The authors are also thankful to Prof. Hengxing Lan for his kind authorization to employ the Rockfall Analyst software for 3D simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Gigli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gigli, G., Morelli, S., Fornera, S., Casagli, N. (2018). TXT-tool 4.039-3.1: Terrestrial Laser Scanner and Geomechanical Surveys for the Rapid Evaluation of Rock Fall Susceptibility Scenarios. In: Sassa, K., Tiwari, B., Liu, KF., McSaveney, M., Strom, A., Setiawan, H. (eds) Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools . Springer, Cham. https://doi.org/10.1007/978-3-319-57777-7_28

Download citation

Publish with us

Policies and ethics