Skip to main content

TXT-tool 3.034-1.1: A Textural Classification of Argillaceous Rocks and Their Durability

  • Chapter
  • First Online:
  • 1026 Accesses

Abstract

Argillaceous rocks can display a wide range of durability behavior after excavation and in cut slopes. This Text-Tool describes a new classification of argillaceous rocks based on their textural characteristics, highlighting the importance of properly classifying this type of rocks in order to predict the cut slope deterioration rates. Three main components of the classification scheme are the clastic framework, the fine-grained matrix, and the cementing agent. Unlike other schemes, the unlithified argillaceous sediments are included as well. The names proposed for the rocks broadly follow the existing nomenclature used in petrographic classifications. The durability of some argillaceous rock types has been assessed by taking into account a set of degradation features of the excavated slopes. It has been observed that the ratios of these textural components exert a strong control on the long-term durability of slopes.

This is a preview of subscription content, log in via an institution.

References

  • Blatt H (1982) Sedimentary petrology. WH Freeman and Company, San Francisco

    Google Scholar 

  • Corominas J, Martinez-Bofill J, Soler A (2015) A textural classification of argillaceous rocks and their durability. Landslides 12(4):669–687

    Article  Google Scholar 

  • Czerewko MA, Cripps JC (2006) The implication of diagenetic history and weathering on the engineering behaviour of mudrocks. In: 10th IAEG international congress: engineering geology for tomorrow’s cities. Paper number 118. http://www.iaeg.info/iaeg2006/start.htm

  • Dick JC, Shakoor A (1992) Lithological controls of mudrock durability. Quat J Eng Geol 25:31–46

    Article  Google Scholar 

  • Dick JC, Shakoor A (1997) Predicting the durability of mudrocks from geological characteristics of mudrocks: In: Santi P, Shakoor A (eds) Association of environmental and engineering geologists. Special Publication No. 9, pp 89–105

    Google Scholar 

  • Dott RH (1964) Wackstone, graywacke and matrix—what approach to inmature sandstone classification? Num 34:625–632

    Google Scholar 

  • Erguler ZA, Shakoor A (2009) Quantification of fragment size distribution of clay-bearing rocks after slake durability testing. Environ Eng Geosci 15:81–89

    Article  Google Scholar 

  • Franklin JA (1983) Report RR29 research and development branch research. Toronto, Ministry of Transportation and, Evaluation of shales for construction projects: an Ontario shale rating system

    Google Scholar 

  • Franklin JA, Chandra R (1972) The slake durability test. Int J Rock Mech Mining Sci Geomech Abstracts 9:325–328

    Article  Google Scholar 

  • Franklin JA, Dusseault MB (1989) Rock engineering. McGraw Hill Inc, New York, p 600

    Google Scholar 

  • Gerber E, Scheidegger AE (1969) Stress-induce weathering of rock masses. Eclogae Gel Helv 62:401–416

    Google Scholar 

  • Gökçeoglu C, Ulusay R, Sönmez H (2000) Factors affecting the durability of selected weak and clay-earing rocks from Turkey, with particular emphasis on the influence of the number of drying and wetting cycles. Eng Geol 57:215–237

    Article  Google Scholar 

  • Grainger P (1984) The influence of clay mineralogy and diagenesis of Upper Carboniferous shales on soil formation in parts of Devon. J Soil Sci 35:599–606

    Google Scholar 

  • Hallsworth CR, Knox RWO’B (1999) BGS rock classification scheme, vol 3. Classification of sediments and sedimentary rocks. British Geological Survey. Research report number rr 99–03. Nottingham UK, 44 pp

    Google Scholar 

  • Martinez-Bofill J (2011) Alterabilidad de limolitas, arcillitas y margas. Aplicación a la estabilidad de desmontes y excavaciones. PhD thesis. Universitat Politèccnica de Catalunya, 427 pp

    Google Scholar 

  • Martinez-Bofill J, Corominas J, Soler A (2004) Behaviour of the weak rock cutslopes and their characterization using the results of the slake durability test. In: Lecture notes in earth sciences, 104. Engineering geology for infrastructure planing in Europe, pp 405–413

    Google Scholar 

  • Martinez-Bofill J, Corominas J, Soler A (2008) Analysis of the relationship between durability and petrological characteristics of weak rocks. Euroengeo. In: Proceedings of the II European conference of international association for engineering geology, Madrid

    Google Scholar 

  • Moon VG, Beattie AG (1995) Textural and microstructural influences on the durability of Waikato coal measures mudrocks. Q J Eng Geol 28:303–312

    Article  Google Scholar 

  • Nichols TC (1980) Rebound its nature and effect on engineering works. Q J Eng Geol 13:133–152

    Article  Google Scholar 

  • Nicholson DT (2004) Hazard assessment for progressive, weathering-related breakdown of excavated rockslopes. Q J Eng Geol Hydrogeol 37:327–346

    Article  Google Scholar 

  • Nickmann M, Spaun G, Thuro K (2006) Engineering geological classification of weak rocks. In: 10th congress of the international association of engineering geology and the environment, paper number 492, Nottingham

    Google Scholar 

  • Nickmann M, Sailer S, Ljubesic J, Thuro K (2010) Engineering geological investigations into the border between hard and weak rocks. In: Williams L et al (eds) Geologically active. Taylor & Francis Group, London, pp 2265–2272

    Google Scholar 

  • Potter PE, Maynard JB, Depetris PJ (2005) Mud and mudstones. Springer, Berlin, p 308

    Google Scholar 

  • Sadisun IA, Shimada H, Ichinose M, Matsui K (2005) Study on the physical disintegration characteristics of Subang claystone subjected to a modified slaking index test. Geotech Geol Eng 23:199–218

    Article  Google Scholar 

  • Santi P (1998) Improving jar slake, slake index, and slake durability tests for shales. Environ Eng Geosci 4:385–396

    Article  Google Scholar 

  • Santi P (2006) Field methods for characterizing weak rocks for engineering. Environ Eng Geosci 12:1–11

    Article  Google Scholar 

  • Shakoor A, Brock D (1987) Relationship between fissility, composition and engineering properties of selected shales from northeast Ohio. Bull Assoc Eng Geol 24:363–379

    Google Scholar 

  • Taylor RK (1988) Coal measures mudrocks: composition, classification and weathering processes. Q J Eng Geol Hydrogeol 21:85–99

    Article  Google Scholar 

  • U.S. Geological Survey (USGS), North American Geologic-Map Data Model Science Language Technical Team (2004) Report on progress to develop a North American science-language standard for digital geologic-map databases; Appendix C1—sedimentary materials: science language for their classification, description, and interpretation in digital geologic-map databases; version 1.0 (12/18/2004). In: Soller DR (ed) Digital mapping techniques’04—workshop proceedings: U.S. Geological Survey open-file report 2004–1451, 595 p. Appendix C1 accessed at http://pubs.usgs.gov/of/2004/1451/sltt/appendixC/appendixC_pdf.zip

  • Wood LE, Deo P (1975) A suggested system for classifying shale materials form embankments. Bull Assoc Eng Geol 12:39–55

    Google Scholar 

  • Young RA (1993) International union crystallography. The Rietveld method. Oxford University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Corominas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corominas, J., Martinez-Bofill, J., Soler, A. (2018). TXT-tool 3.034-1.1: A Textural Classification of Argillaceous Rocks and Their Durability. In: Sassa, K., Tiwari, B., Liu, KF., McSaveney, M., Strom, A., Setiawan, H. (eds) Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools . Springer, Cham. https://doi.org/10.1007/978-3-319-57777-7_24

Download citation

Publish with us

Policies and ethics