Skip to main content

TXT-tool 2.039-4.2 LEWIS Project: An Integrated System for Landslides Early Warning

  • Chapter
  • First Online:
Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools

Abstract

In the framework of the National Operational Programme 2007-13 “Research and Competitiveness”, co-funded by the European Regional Development Fund, the Ministry of Research (MIUR) financed the project “AN INTEGRATED SYSTEMS FOR HYDROGEOLOGICAL RISK MONITORING, EARLY WARNING AND MITIGATION ALONG THE MAIN LIFELINES” with the acronym LEWIS (Landslides Early Warning Integrated System). The project aims to develop an integrated, innovative and efficient solution to manage risk issues associated with infrastructure, on landslide-prone slopes by developing and testing a system able to identify potentially dangerous landslides in a timely manner, and to activate all needed measures for impact mitigation, including information delivery. The system includes many components: standard criteria for evaluation and mapping landslides susceptibility: monitoring equipment for measuring the onset of landslide movement; telecommunication networks; mathematical models for both triggering and propagation of landslides induced by rainfall; models for risk scenario forecasting; a centre for data acquisition and processing; and a traffic control centre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Artese G, Perrelli M, Artese S. Meduri S, Brogno N (2015) POIS, a low cost tilt and position sensor: design and first tests, vol 5(5). Multidisciplinary Digital Publishing Institute

    Google Scholar 

  • Avolio MV, Di Gregorio S, Lupiano V, Mazzanti P (2013) SCIDDICA-SS3: a new version of cellular automata model for simulating fast moving landslides. J Supercomput. doi:10.1007/s11227-013-0948-1

    Google Scholar 

  • Capparelli G, Versace P (2011) FLaIR and SUSHI: two mathematical models for early warning systems for rainfall induced landslides. Landslides 8:67–79. doi:10.1007/s10346-010-0228-6

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic Publisher, Dordrecht, pp 135–175

    Chapter  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2006) A GIS-based automated procedure for landslide susceptibility mapping by the conditional analysis method: the Baganza valley case study (Italian Northern Apennines). Env Geol 50:941–961

    Article  Google Scholar 

  • Costanzo S, Spadafora MOH, Scarcella F, DiMassa G (2013) Multiband software defined radar for soil discontinuities detection, J Electr Comput Eng. Article ID 379832

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. Nat Acad Sci 247:36–75 (Special Report, Transportation Research Board)

    Google Scholar 

  • Del Ventisette C, Intrieri E, Luzi G, Casagli N, Fanti R, Leva D (2011) Using ground based radar interferometry during emergency: the case of the A3 motorway (Calabria Region, Italy) threatened by a landslide. Nat Hazards Earth Syst Sci 11(9):2483–2495. doi:10.5194/nhess-11-2483-2011

    Article  Google Scholar 

  • Intrieri E, Gigli G, Casagli N, Nadim F (2013) Landslide Early Warning System: toolbox and general concepts. Nat Hazards Earth Syst Sci 13(85–90):2013. doi:10.5194/nhess-13-85-2013

    Google Scholar 

  • Peres DJ, Cancelliere A (2014) Accounting for variability in rain-event intensity and initial conditions in landslide triggering return period mapping via a monte carlo approach. In: Landslide Science for a safer geoenvironment: volume 2: methods of landslide studies, pp 499–505

    Google Scholar 

  • Rigon R, Bertoldi G, Over TM (2006) GEOtop: a distributed hydrological model with coupled water and energy budgets. J Hydromet 7:371–388

    Article  Google Scholar 

  • Sassa K, Yueping Y (2010) Early warning of landslides. Geological Publishing House, 166 p

    Google Scholar 

  • VanWestern CJ, Castellanos Abella EA, Sekhar LK (2008) Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article  Google Scholar 

  • Versace P, Artese G, Autiero M, Avolio MV, Bardi F, Borgia A, Cancelliere A, Capparelli G, Capuozzo M, Caruso A, Casagli N, Cavallaro L, Cianciosi O, Conforti M, Conte E, Costanzo A, Costanzo S, De Marinis M, Di Gregorio S, Di Massa G, De Luca DL, De Santis D, Donato A, Fanti R, Fidolini F, Formetta G, Foti E, Intrieri E, La Sala G, Luci A, Maletta D, Mannara G, Moreno D, Morrone L, Mungari T, Muto F, Paoletti F, Peres DJ, Raffo A, Rago V, Rigon R, Spadafora F, Spataro W, Troncone A, Trunfio GA, Vena M, Viggiani G (2014) An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines. In: Capparelli G, Greco R (eds) Aspetti idrologici e Idraulici per il controllo dei movimenti franosi, pp 1–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Versace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Versace, P., Capparelli, G., De Luca, D.L. (2018). TXT-tool 2.039-4.2 LEWIS Project: An Integrated System for Landslides Early Warning. In: Sassa, K., et al. Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools . Springer, Cham. https://doi.org/10.1007/978-3-319-57774-6_38

Download citation

Publish with us

Policies and ethics