Skip to main content

Current Status of Himalayan Cryosphere and Adjacent Mountains

  • Chapter
  • First Online:
Book cover Science and Geopolitics of The White World

Abstract

Hindu Kush-Karakoram-Himalaya (HKKH) region represents one of the major non-polar cryosphere domains on the Earth. This region feeds three major rivers namely: the Indus, the Ganga and the Brahmaputra and supports a huge population of more than 1 billion people. There is wide variability and uncertainty in data on most aspects of this cryospheric domain. The behaviour of glacial melting in HKH region is highly heterogeneous with the highest negative mass balance in the eastern Himalaya, relatively less negative mass balance in the western Himalaya with positive mass balance in the Karakoram. The hydrological budget of the higher Himalayan rivers depends on the precipitation (snowfall and rainfall) but the available estimates on snow cover and rainfall are highly variable and in few cases appear to be unacceptable. Reported precipitation variability for the Indus basin is more than 250%, for the Ganga basin it is 100% and for the Brahmaputra basin the variability is more than 240%. The estimate on glacial cover and its volume in the Himalayan-Karakoram regions shows variability of more than 130 and 250% respectively. The available estimates on the glacial melt fraction also show high variability, for example for the Indus basin the variability is ~170%, for the Ganga basin it is ~300% and for the Brahmaputra basin the variability is more than 100%. The number of glaciers in the Himalaya and the adjacent mountains differ in the different glacier inventories. Similarly, published data on basin wise glaciated area varies from 300% for Indus basin, 200% for the Ganga basin and it is more than 450% for the Brahmaputra basin. The present work reviews current status of the Himalayan cryosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford D, R. Armstrong (2010) The role of glaciers in stream flow from the Nepal Himalaya. Cryosphere Discuss 4(2):469–494

    Google Scholar 

  • Armstrong RL (2010) The Glaciers of the Hindu-Kush-Himalayan Region: a summary of the science regarding glacier melt/retreat in the Himalayan, Hindu Kush, Karakoram, Pamir, and Tien Shan Mountain Ranges. Technical Paper. International Centre for Integrated Mountain Development (ICIMOD). Kathmandu, Nepal

    Google Scholar 

  • Arora M, Rathore DS, Kumar R, Kumar A (2010) Estimation of melt contribution to total streamflow in River Bhagirathi and River DhauliGanga at Loharinag Pala and TapovanVishnugad project sites. J Water Resour Protect 2(7):636–643. doi:10.4236/jwarp.2010.27073

  • Azam MF, Wagnon P, Ramanathan A, Vincent C, Sharma P, Arnaud Y, Linda A, Pottakkal JG, Chevallier P, Singh VB, Berthier E (2012) From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India. J Glaciology 58(208):315–324

    Article  Google Scholar 

  • Bahuguna IM, Rathore BP, Brahmbhatt R, Sharma M, Dhar S, Randhawa SS, Kumar K, Romshoo S, Shah RD, Ganjoo RK (2014) Are the Himalayan glaciers retreating. Curr Sci 106(7):1008–1013

    Google Scholar 

  • Bajracharya SR, Maharjan SB, Shrestha F (2014a) The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data. Ann Glaciol 55(66):159–166

    Article  Google Scholar 

  • Bajracharya SR, Maharjan SB, Shrestha F (2014b) Understanding dynamics of Himalayan glaciers: scope and challenges of remote sensing. Int Arch Photogrammetry Remote Sens Spat Inf Sci 40(8):1283

    Article  Google Scholar 

  • Bajracharya SR, Mool PK, Shrestha BR (2007) Impact of climate change on Himalayan glaciers and glacial lakes: Case studies on GLOF and associated hazards in Nepal and Bhutan. Kathmandu, Nepal, International Centre for Integrated Mountain Development (ICIMOD Report)

    Google Scholar 

  • Bajracharya SR, Shrestha F, Maharjan SB (2011) Glaciers shrinking in Nepal Himalaya. INTECH Open Access Publisher

    Google Scholar 

  • Barry RG (1987) The Cryosphere-neglected component of the climate system. In: Radok U (ed) Towards understanding climate. West view Press, Boulder, CO, pp 35–67

    Google Scholar 

  • Barry RG (2002) History of the World Data Center for Glaciology, Boulder, and National Snow and Ice Data Center at the University of Colarado. Glacial, Data Report GD-30. NSDC, Co

    Google Scholar 

  • Barry RG (2006) The status of research on glaciers and global glacier recession: a review. Prog Phys Geogr 30(3):285–306

    Article  Google Scholar 

  • Barry R, Gan TY (2011) The global cryosphere: past, present and future. Cambridge University Press, Cambridge

    Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303–309

    Article  Google Scholar 

  • Basnett S, Kulkarni AV, Bolch T (2013) The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya India. J Glaciol 59(218):1035–1046

    Article  Google Scholar 

  • Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon P, Chevallier P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens Environ 108(3):327–338

    Article  Google Scholar 

  • Bhambri R, Bolch T (2009) Glacier mapping: a review with special reference to the Indian Himalayas. Prog Phys Geogr 33(5):672–704

    Article  Google Scholar 

  • Bhambri R, Bolch T, Chaujar RK, Kulshreshtha SC (2011) Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. J Glaciol 57(203):543–556

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 115(F03019):2009J. doi:10.1029/F001426

    Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science 336:310–314

    Article  Google Scholar 

  • Chaturvedi RK, Kulkarni A, Karyakarte Y, Joshi J, Bala G (2014) Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Clim Change 123(2):315–328

    Article  Google Scholar 

  • CNCC (2007) China national report on climate change, China National Committee on Climate Change. Beijing, China

    Google Scholar 

  • Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller M, Nicholson L, Zemp M (2011) Glossary of glacier mass balance and related terms, IHP-VII technical documents in hydrology No. 86, IACS Contribution No. 2. International Hydrological Program, UNESCO, Paris

    Google Scholar 

  • Dobhal DP, Gergan JT, Thayyen RJ (2004) Recession and morphogeometrical changes of Dokriani glacier (1962–1995), Garhwal Himalaya India. Curr Sci 86(5):692–696

    Google Scholar 

  • Dobrowolski, A.B. 1923. Historjanaturalna lodu (Natural history of ice). Warsaw:Nakland H. Lindenfela. 99–940 (in polish, French summary)

    Google Scholar 

  • Dyhrenfurth GO (1955) To the third pole: the history of the high Himalaya, 1st edn. Ex Libris, Werner Laurie, London

    Google Scholar 

  • Dyurgerov MB, Meier MF (1997) Mass balance of mountain and subpolar glaciers: a new global assessment for 1961–1990. Arctic Alp Res 379–391

    Google Scholar 

  • Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot, vol 58. Institute of Arctic and Alpine Research, University of Colorado, Boulder

    Google Scholar 

  • Fujita K, Nuimura T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc Natl Acad Sci 108(34):14011–14014

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat Geosci 5:322–325

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 (vol 7, pp 1263, 2013). Cryosphere 7(6):1885–1886

    Article  Google Scholar 

  • Gurung DR, Kulkarni AV, Giriraj A, Aung KS, Shrestha B, Srinivasan J (2011) Changes in seasonal snow cover in Hindu Kush-Himalayan region. Cryosphere Discuss 5(2):755–777

    Article  Google Scholar 

  • Haeberli W, Frauenfelder R, Hoelzle M, Maisch M (1999) On rates and acceleration trends of global glacier mass changes. GeografiskaAnnaler: Series A. Phys Geogr 81(4):585–591

    Google Scholar 

  • Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt Res Dev 25(4):332–340

    Article  Google Scholar 

  • Hewitt K (2011) Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mt Res Dev 31(3):188–200

    Article  Google Scholar 

  • Immerzeel WW, Bierkens MFP (2012) Asia’s water balance. Nat Geosci 5(12):841–842

    Article  Google Scholar 

  • Immerzeel WW, Van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385

    Article  Google Scholar 

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482(7386):514–518

    Article  Google Scholar 

  • Jain SK, Kumar V (2012) Trend analysis of rainfall and temperature data for India. Curr Sci 102(1):37–49

    Google Scholar 

  • Jansson P, Hock R, Schneider T (2003) The concept of glacier storage: a review. J Hydrol 282(1):116–129

    Article  Google Scholar 

  • Jianchu X, Shrestha A, Eriksson M (2009) Climate change and its impacts on glaciers and water resource management in the Himalayan Region. Assessment of Snow, Glaciers and Water Resources in Asia. International Hydrological Programme of UNESCO and Hydrology and Water Resources Programme of WMO. Koblenz, Germany, pp 44–54

    Google Scholar 

  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412):495–498

    Article  Google Scholar 

  • Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci 107(47):20223–20227

    Article  Google Scholar 

  • Kang S, Xu Y, You Q, Flügel WA, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101

    Article  Google Scholar 

  • Khan AA, Pant NC, Sarkar A, Tandon SK, Thamban M, Mahalinganathan K (2017) The Himalayan cryosphere: a critical assessment and evaluation of glacial melt fraction in the Bhagirathi basin. Geosci Front 8(1):107–115

    Google Scholar 

  • Khan AA, Pant NC, Ravindra R, Alok A, Gupta M, Gupta S. A precipitation perspective of the hydrosphere-cryosphere interaction in the Himalaya (submitted in geological society of London)

    Google Scholar 

  • Kulkarni AV, Rathore BP, Singh SK, Bahuguna IM (2011) Understanding changes in the Himalayan cryosphere using remote sensing techniques. Int J Remote Sens 32(3):601–615

    Article  Google Scholar 

  • Kulkarni AV, Dhar S, Rathore BP, Kalia R (2006) Recession of samudra tapu glacier, chandra river basin, Himachal Pradesh. J Indian Soc Remote Sens 34(1):39–46

    Article  Google Scholar 

  • Kulkarni AV, Bahuguna IM, Rathore BP, Singh SK, Randhawa SS, Sood RK, Dhar S (2007) Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Curr Sci 92(1):69–74

    Google Scholar 

  • Kumar V, Singh P, Singh V (2007) Snow and glacier melt contribution in the Beas river at Pandoh dam, Himachal Pradesh India. Hydrol Sci J 52(2):376–388

    Article  Google Scholar 

  • Li Z, Sun W, Zeng Q (1998) Measurements of glacier variation in the Tibetan Plateau using Landsat data. Remote Sens Environ 63(3):258–264

    Article  Google Scholar 

  • Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Wu L, Nan Z, Wang J, Shen Y (2008) Cryospheric change in China. Glob Planet Change 62(3):210–218

    Article  Google Scholar 

  • Liu SY, Ding YJ, Zhang Y, Shangguan DH, Li J, Han HD, Wang J, Xie CM (2006) Impact of the glacial change on water resources in the Tarim River Basin. Acta Geogr Sin 61(5):482–490

    Google Scholar 

  • Lutz AF, Immerzeel WW (2013) Water availability analysis for the upper Indus, Ganges, Brahmaputra, Salween and Mekong river basins. Final Report to ICIMOD, September 2013. Future Water Report (127)

    Google Scholar 

  • Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Change 4(7):587–592

    Article  Google Scholar 

  • Matsuo K, Heki K (2010) Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet Sci Lett 290(1):30–36

    Article  Google Scholar 

  • Maurya AS, Shah M, Deshpande RD, Bhardwaj RM, Prasad A, Gupta SK (2011) Hydrograph separation and precipitation source identification using stable water isotopes and conductivity: River Ganga at Himalayan foothills. Hydrol Process 25(10):1521–1530

    Article  Google Scholar 

  • Mayewski PA, Jeschke PA (1979) Himalayan and Trans-Himalayan glacier fluctuations since AD 1812. Arctic and alpine research, pp 267–287

    Google Scholar 

  • Mehta M, Dobhal DP, Bisht MPS (2011) Change of Tipra glacier in the Garhwal Himalaya, India, between 1962 and 2008. Prog Phys Geogr 35(6):721–738

    Article  Google Scholar 

  • Meier MF, Bahr DB (1996) Counting glaciers: use of scaling methods to estimate the number and size distribution of the glaciers of the world. In: Glaciers, ice sheets and volcanoes: a tribute to Mark F. Meier, vol 96, pp 89–94. CRREL Special Report

    Google Scholar 

  • Messerli B (2000) Mountains of the World—Water Towers for the 21st Century. In This limited edition volume of proceedings from the Rosenberg Forum was prepared and distributed by Mountain Culture at The Banff Centre with funding from the Max Bell Foundation. Permission is hereby granted by the publisher to reproduce this document for non-profit and educational purposes

    Google Scholar 

  • Nainwal HC, Negi BDS, Chaudhary M, Sajwan KS, Gaurav A (2008) Temporal changes in rate of recession: Evidences from Satopanth and BhagirathKharak glaciers, Uttarakhand, using Total Station Survey. Curr Sci 94(5):653–660

    Google Scholar 

  • Oerlemans J, Grisogono B (2002) Glacier winds and parameterisation of the related surface heat fluxes. Tellus A 54(5):440–452

    Article  Google Scholar 

  • Pandey P, Venkataraman G (2013) Changes in the glaciers of Chandra-Bhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. Int J Remote Sens 34(15):5584–5597

    Article  Google Scholar 

  • Paul F, Kääb A, Rott H, Shepherd A, Strozzi T, Volden E (2009) GlobGlacier: a new ESA project to map the world’s glaciers and ice caps from space. EARSeLeProceedings 8(1):11–25

    Google Scholar 

  • Qin DH (1999) Map of Glacier Resources in the Himalayas. Science Press, Beijing

    Google Scholar 

  • Rees HG, Collins DN (2006) Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol Process 20(10):2157–2169

    Article  Google Scholar 

  • Racoviteanu A (2011) Himalayan glaciers: combining remote sensing, field techniques and indigenous knowledge to understand spatio-temporal patterns of glacier changes and their impact on water resources. University of Colorado, Boulder, CO. PhD

    Google Scholar 

  • Racoviteanu AE, Armstrong R, Williams MW (2013) Evaluation of an ice ablation model to estimate the contribution of melting glacier ice to annual discharge in the Nepal Himalaya. Water Resour Res 49(9):5117–5133

    Article  Google Scholar 

  • Raina VK (2009) Himalayan glaciers: a state-of-art review of glacial studies, glacial retreat and climate change. Himalayan glaciers: a state-of-art review of glacial studies, glacial retreat and climate change. (Report for Min of Environment, Govt of India)

    Google Scholar 

  • Ren J, Qin D, Kang S, Hou S, Pu J, Jing Z (2004) Glacier variations and climate warming and drying in the central Himalayas. Chin Sci Bull 49(1):65–69

    Article  Google Scholar 

  • Sarikaya MA, Bishop MP, Shroder JF, Olsenholler JA (2012) Space-based observations of Eastern Hindu Kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote Sens Lett 3(1):77–84

    Article  Google Scholar 

  • Schmidt S, Nüsser M (2012) Changes of high altitude glaciers from 1969 to 2010 in the trans-Himalayan Kang Yatze Massif, Ladakh, northwest India. Arct Antarct Alp Res 44(1):107–121

    Article  Google Scholar 

  • Schaner N, Voisin N, Nijssen B, Lettenmaier DP (2012) The contribution of glacier melt to streamflow. Environmental Research Letters 7(3):034029

    Article  Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosciences 4:156–159

    Article  Google Scholar 

  • Seidel K, Martinec J, Baumgartner MF (2000) December. Modelling runoff and impact of climate change in large Himalayan basins. In International Conference on Integrated Water Resources Management (ICIWRM), pp 19–21

    Google Scholar 

  • Sharma AK, Singh SK, Kulkarni AV (2013) Glacier Inventory in Indus, Ganga and Brahmaputra Basins of the Himalaya. Nat Acad Sci Lett 36(5):497–505

    Google Scholar 

  • Singh P, Arora M, Goel NK (2006) Effect of climate change on runoff of a glacierized Himalayan basin. Hydrol Process 20(9):1979–1992

    Article  Google Scholar 

  • Singh P, Jain SK (2002) Snow and glacier melt in the Satluj River at Bhakra Dam in the western Himalayan region. Hydrol Sci J 47(1):93–106

    Article  Google Scholar 

  • Singh RD, Arora M, Kumar R (2010) Snow/Glacier Melt Contribution to Run-off in the Himalayan Rivers-Assessment of Potential Impact of Climate Change

    Google Scholar 

  • Singh P, Haritashya UK, Kumar N (2008) Modelling and estimation of different components of streamflow for Gangotri Glacier basin, Himalayas/Modélisation et estimation des différentes composantes de l’écoulement fluviatile du bassin du Glacier Gangotri. Himalaya. Hydrological sciences journal 53(2):309–322

    Article  Google Scholar 

  • Singh P, Jain SK, Kumar N (1997) Estimation of snow and glacier-melt contribution to the Chenab River, Western Himalaya. Mt Res Dev 49–56

    Google Scholar 

  • Shrestha KL (2005) Global change impact assessment for Himalayan mountain regions for environmental management and sustainable development. Glob Environ Res 9(1):69 (English Edition)

    Google Scholar 

  • Shrestha AB, Agrawal NK, Alfthan B, Bajracharya SR, Maréchal J, van Oort B (eds) (2015) The Himalayan climate and water Atlas: impact of climate change on water resources in five of Asia’s major River Basins. ICIMOD, GRID-Arendal and CICERO

    Google Scholar 

  • Shi YF (2008) Collection of the studies on glaciology, climate and environmental changes in China. China Meteorological Press, Beijing, pp 850

    Google Scholar 

  • Shukla A, Gupta RP, Arora MK (2009) Estimation of debris cover and its temporal variation using optical satellite sensor data: a case study in Chenab basin Himalaya. J Glaciology 55(191):444–452

    Article  Google Scholar 

  • Srivastava D (2012) Status report on Gangotri glacier. Science and Engineering Research Board, Department of Science and Technology. Himalayan Glaciology Technical Report No. 3, New Delhi, p 10

    Google Scholar 

  • UNEP Global Environmental Alert Services (2012) Measuring glacier change in the Himalayas. Thematic focus: climate change, ecosystem management. UNEP and WGMS. 2008. Global glacier changes: facts and figures

    Google Scholar 

  • Vincent C, Ramanathan A, Wagnon P, Dobhal DP, Linda A, Berthier E, Sharma P, Arnaud Y, Azam MF, Gardelle J (2013) Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (Northern India, Himalaya) during the nineties preceded recent mass loss. The Cryosphere 7(2):569–582

    Article  Google Scholar 

  • Wake C (1989) The influence of summertime precipitation events on the meltwater production in the Karakoram, northern Pakistan. In: Proceedings of the 46th Eastern Snow Conference, pp 28–35

    Google Scholar 

  • Williams RS Jr., Ferrigno JG (eds) (2012) State of the Earth’s cryosphere at the beginning of the 21st century—Glaciers, global snow cover, floating ice, and permafrost and periglacial environments: U.S. Geological Survey Professional Paper 1386–A, 546 p

    Google Scholar 

  • WGMS (2008) World Glacial Monitoring Service, Glacier Mass Balance Bulletin. 10 (2006–2007), ICSU (FAGS)/ IUGG (IACS)/ UNEP/UNESCO /WMO, Zurich

    Google Scholar 

  • Xu B, Cao J, Hansen J, Yao T, Joswia DR, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu X (2009) Black soot and the survival of Tibetan glaciers. P Natl Acad Sci USA 106(52):22114–22118

    Google Scholar 

  • Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature climate change advance online publication

    Google Scholar 

  • Zemp M, Hoelzle M, Haeberli W (2009) Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Ann Glaciol 50(50):101–111

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Engineering Research Board, Department of Science and Technology funded project entitled “Fingerprinting of glacial melt water in the Ganga basin-Implications for modelling of hydrological cycle in a Himalayan river system” grant number NO.SR/DGH-46/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, A.A., Pant, N.C., Ravindra, R. (2018). Current Status of Himalayan Cryosphere and Adjacent Mountains. In: Goel, P., Ravindra, R., Chattopadhyay, S. (eds) Science and Geopolitics of The White World. Springer, Cham. https://doi.org/10.1007/978-3-319-57765-4_12

Download citation

Publish with us

Policies and ethics