Skip to main content

The STIM-Orai Pathway: Regulation of STIM and Orai by Thiol Modifications

  • Chapter
  • First Online:
Store-Operated Ca²⁺ Entry (SOCE) Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 993))

Abstract

Cysteines are among the least abundant amino acids found in proteins. Due to their unique nucleophilic thiol group, they are able to undergo a broad range of chemical modifications besides their known role in disulfide formation, such as S-sulfenylation (-SOH), S-sulfinylation (-SO(2)H), S-sufonylation (-SO(3)H), S-glutathionylation (-SSG), and S-sulfhydration (-SSH), among others. These posttranslational modifications can be irreversible and act as transitional modifiers or as reversible on-off switches for the function of proteins. Disturbances of the redox homeostasis, for example, in situations of increased oxidative stress, can contribute to a range of diseases. Because Ca2+ signaling mediated by store-operated calcium entry (SOCE) is involved in a plethora of cellular responses, the cross-talk between reactive oxygen species (ROS) and Ca2+ is critical for homeostatic control. Identification of calcium regulatory protein targets of thiol redox modifications is needed to understand their role in biology and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdesselem M, Ramodiharilafy R, Devys L, Gacoin T, Alexandrou A, Bouzigues CI (2017) Fast quantitative ROS detection based on dual-color single rare-earth nanoparticle imaging reveals signaling pathway kinetics in living cells. Nanoscale 9:656–665

    Article  CAS  PubMed  Google Scholar 

  • Alansary D, Bogeski I, Niemeyer BA (2015) Facilitation of Orai3 targeting and store-operated function by Orai1. Biochim Biophys Acta 1853:1541–1550

    Article  CAS  PubMed  Google Scholar 

  • Alansary D, Schmidt B, Dorr K, Bogeski I, Rieger H, Kless A, Niemeyer BA (2016) Thiol dependent intramolecular locking of Orai1 channels. Sci Rep 6:33347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appenzeller-Herzog C, Banhegyi G, Bogeski I, Davies KJ, Delaunay-Moisan A, Forman HJ, Gorlach A, Kietzmann T, Laurindo F, Margittai E, Meyer AJ, Riemer J, Rutzler M, Simmen T, Sitia R, Toledano MB, Touw IP (2016) Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish. Free Radic Biol Med 94:157–160

    Article  CAS  PubMed  Google Scholar 

  • Aytes A, Mollevi DG, Martinez-Iniesta M, Nadal M, Vidal A, Morales A, Salazar R, Capella G, Villanueva A (2012) Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype. Mol Carcinog 51:746–753

    Article  CAS  PubMed  Google Scholar 

  • Babior BM, Curnutte JT (1987) Chronic granulomatous disease—pieces of a cellular and molecular puzzle. Blood Rev 1:215–218

    Article  CAS  PubMed  Google Scholar 

  • Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A (2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 89:27–71

    Article  CAS  PubMed  Google Scholar 

  • Bauer MC, O’Connell D, Cahill DJ, Linse S (2008) Calmodulin binding to the polybasic C-termini of STIM proteins involved in store-operated calcium entry. Biochemistry 47:6089–6091

    Article  CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Beedle AE, Lynham S, Garcia-Manyes S (2016) Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding. Nat Commun 7:12490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzerdjeb N, Sevestre H, Ahidouch A, Ouadid-Ahidouch H (2016) Orai3 is a predictive marker of metastasis and survival in resectable lung adenocarcinoma. Oncotarget 7:81588–81597

    PubMed  PubMed Central  Google Scholar 

  • Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, Wultsch T, Eilers J, Meuth SG, Stoll G, Nieswandt B (2009) STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci Signal 2:ra67

    Article  PubMed  Google Scholar 

  • Berna-Erro A, Jardin I, Salido GM, Rosado JA (2017) Role of STIM2 in cell function and physiopathology. J Physiol, Jan 14. doi:10.1113/JP273889

  • Bhardwaj R, Muller HM, Nickel W, Seedorf M (2013) Oligomerization and Ca2+/calmodulin control binding of the ER Ca2+-sensors STIM1 and STIM2 to plasma membrane lipids. Biosci Rep 33(5):e00077. doi:10.1042/BSR20130089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhardwaj R, Hediger MA, Demaurex N (2016) Redox modulation of STIM-ORAI signaling. Cell Calcium 60:142–152

    Article  CAS  PubMed  Google Scholar 

  • Bogeski I, Kummerow C, Al-Ansary D, Schwarz EC, Koehler R, Kozai D, Takahashi N, Peinelt C, Griesemer D, Bozem M, Mori Y, Hoth M, Niemeyer BA (2010) Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Sci Signal 3:ra24

    Article  PubMed  CAS  Google Scholar 

  • Bogeski I, Kappl R, Kummerow C, Gulaboski R, Hoth M, Niemeyer BA (2011) Redox regulation of calcium ion channels: chemical and physiological aspects. Cell Calcium 50:407–423

    Article  CAS  PubMed  Google Scholar 

  • Bogeski I, Kilch T, Niemeyer BA (2012) ROS and SOCE: recent advances and controversies in the regulation of STIM and Orai. J Physiol 590:4193–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF Jr (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181:1129–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Xu X, Zhao Z, Zhao F, Gao Y, Yan X, Wan Y (2017) Hydrogen peroxide is a critical regulator of the hypoxia-induced alterations of store-operated Ca2+ entry into rat pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 312(4):L477–L487

    Article  PubMed  Google Scholar 

  • Chouchani ET, James AM, Fearnley IM, Lilley KS, Murphy MP (2011) Proteomic approaches to the characterization of protein thiol modification. Curr Opin Chem Biol 15:120–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clempus RE, Griendling KK (2006) Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res 71:216–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coenen MJ, Gregersen PK (2009) Rheumatoid arthritis: a view of the current genetic landscape. Genes Immun 10:101–111

    Article  CAS  PubMed  Google Scholar 

  • Conway ME, Lee C (2015) The redox switch that regulates molecular chaperones. Biomol Concepts 6:269–284

    Article  CAS  PubMed  Google Scholar 

  • Couto N, Wood J, Barber J (2016) The role of glutathione reductase and related enzymes on cellular redox homeostasis network. Free Radic Biol Med 95:27–42

    Article  CAS  PubMed  Google Scholar 

  • Curnutte JT, Babior BM (1987) Chronic granulomatous disease. Adv Hum Genet 16:229–297

    Article  CAS  PubMed  Google Scholar 

  • Darbellay B, Arnaudeau S, Bader CR, Konig S, Bernheim L (2011) STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. J Cell Biol 194:335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxidative Med Cell Longev 2016:3565127

    Google Scholar 

  • DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282:17548–17556

    Article  CAS  PubMed  Google Scholar 

  • Derler I, Madl J, Schutz G, Romanin C (2012) Structure, regulation and biophysics of I(CRAC), STIM/Orai1. Adv Exp Med Biol 740:383–410

    Article  CAS  PubMed  Google Scholar 

  • Diez-Bello R, Jardin I, Salido GM, Rosado JA (2016) Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. Biochim Biophys Acta 16:30300–7. doi:10.1016/j.bbamcr.2016.11.014

    Google Scholar 

  • Dorr K, Kilch T, Kappel S, Alansary D, Schwar G, Niemeyer BA, Peinelt C (2016) Cell type-specific glycosylation of Orai1 modulates store-operated Ca2+ entry. Sci Signal 9:ra25

    Article  PubMed  CAS  Google Scholar 

  • Droge W (2002a) Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol 37:1333–1345

    Article  CAS  PubMed  Google Scholar 

  • Droge W (2002b) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  PubMed  Google Scholar 

  • Faouzi M, Kischel P, Hague F, Ahidouch A, Benzerdjeb N, Sevestre H, Penner R, Ouadid-Ahidouch H (2013) ORAI3 silencing alters cell proliferation and cell cycle progression via c-myc pathway in breast cancer cells. Biochim Biophys Acta 1833:752–760

    Article  CAS  PubMed  Google Scholar 

  • Fernandez RA, Wan J, Song S, Smith KA, Gu Y, Tauseef M, Tang H, Makino A, Mehta D, Yuan JX (2015) Upregulated expression of STIM2, TRPC6, and Orai2 contributes to the transition of pulmonary arterial smooth muscle cells from a contractile to proliferative phenotype. Am J Physiol Cell Physiol 308:C581–C593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702

    Article  CAS  PubMed  Google Scholar 

  • Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209

    Article  CAS  PubMed  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287:C246–C256

    Article  CAS  PubMed  Google Scholar 

  • Frischauf I, Schindl R, Bergsmann J, Derler I, Fahrner M, Muik M, Fritsch R, Lackner B, Groschner K, Romanin C (2011) Cooperativeness of Orai cytosolic domains tunes subtype-specific gating. J Biol Chem 286:8577–8584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibhardt CS, Zimmermann KM, Zhang X, Belousov VV, Bogeski I (2016) Imaging calcium and redox signals using genetically encoded fluorescent indicators. Cell Calcium 60:55–64

    Article  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251:261–268

    Article  CAS  PubMed  Google Scholar 

  • Graham SJ, Dziadek MA, Johnstone LS (2011) A cytosolic STIM2 preprotein created by signal peptide inefficiency activates ORAI1 in a store-independent manner. J Biol Chem 286:16174–16185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths HR (2008) Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmun Rev 7:544–549

    Article  CAS  PubMed  Google Scholar 

  • Gross SA, Wissenbach U, Philipp SE, Freichel M, Cavalie A, Flockerzi V (2007) Murine ORAI2 splice variants form functional Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem 282:19375–19384

    Article  CAS  PubMed  Google Scholar 

  • Grupe M, Myers G, Penner R, Fleig A (2010) Activation of store-operated I(CRAC) by hydrogen peroxide. Cell Calcium 48:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins BJ, Irrinki KM, Mallilankaraman K, Lien YC, Wang Y, Bhanumathy CD, Subbiah R, Ritchie MF, Soboloff J, Baba Y, Kurosaki T, Joseph SK, Gill DL, Madesh M (2010) S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 190:391–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzmann C, Kilch T, Kappel S, Dorr K, Jung V, Stockle M, Bogeski I, Peinelt C (2015) Differential redox regulation of Ca(2)(+) signaling and viability in normal and malignant prostate cells. Biophys J 109:1410–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoth M (2016) CRAC channels, calcium, and cancer in light of the driver and passenger concept. Biochim Biophys Acta 1863:1408–1417

    Article  CAS  PubMed  Google Scholar 

  • Hoth M, Niemeyer BA (2013) The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr Top Membr 71:237–271

    Article  CAS  PubMed  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultqvist M, Olofsson P, Holmberg J, Backstrom BT, Tordsson J, Holmdahl R (2004) Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci U S A 101:12646–12651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inayama M, Suzuki Y, Yamada S, Kurita T, Yamamura H, Ohya S, Giles WR, Imaizumi Y (2015) Orai1-Orai2 complex is involved in store-operated calcium entry in chondrocyte cell lines. Cell Calcium 57:337–347

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB, Kowald A (2012) The free-radical theory of ageing—older, wiser and still alive: modelling positional effects of the primary targets of ROS reveals new support. Bioessays 34:692–700

    Article  CAS  PubMed  Google Scholar 

  • Kito H, Yamamura H, Suzuki Y, Ohya S, Asai K, Imaizumi Y (2015) Regulation of store-operated Ca2+ entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells. Biochem Biophys Res Commun 459:457–462

    Article  CAS  PubMed  Google Scholar 

  • Kourie JI (1998) Effects of ATP-sensitive potassium channel regulators on chloride channels in the sarcoplasmic reticulum vesicles from rabbit skeletal muscle. J Membr Biol 164:47–58

    Article  CAS  PubMed  Google Scholar 

  • Kwon MJ, Kim B, Lee YS, Kim TY (2012) Role of superoxide dismutase 3 in skin inflammation. J Dermatol Sci 67:81–87

    Article  CAS  PubMed  Google Scholar 

  • Lacruz RS, Feske S (2015) Diseases caused by mutations in ORAI1 and STIM1. Ann N Y Acad Sci 1356(1):45–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KP, Yuan JP, Zeng W, So I, Worley PF, Muallem S (2009) Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels. Proc Natl Acad Sci U S A 106:14687–14692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leichert LI, Dick TP (2015) Incidence and physiological relevance of protein thiol switches. Biol Chem 396:389–399

    Article  CAS  PubMed  Google Scholar 

  • Lewis RS (2001) Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497–521

    Article  CAS  PubMed  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A, Penner R (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 17:794–800

    Article  CAS  PubMed  Google Scholar 

  • Ma G, Wei M, He L, Liu C, Wu B, Zhang SL, Jing J, Liang X, Senes A, Tan P, Li S, Sun A, Bi Y, Zhong L, Si H, Shen Y, Li M, Lee MS, Zhou W, Wang J, Wang Y, Zhou Y (2015) Inside-out Ca(2+) signalling prompted by STIM1 conformational switch. Nat Commun 6:7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancarella S, Wang Y, Deng X, Landesberg G, Scalia R, Panettieri RA, Mallilankaraman K, Tang XD, Madesh M, Gill DL (2011) Hypoxia-induced acidosis uncouples the STIM-Orai calcium signaling complex. J Biol Chem 286:44788–44798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino SM, Gladyshev VN (2010) Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol 404:902–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miederer AM, Alansary D, Schwar G, Lee PH, Jung M, Helms V, Niemeyer BA (2015) A STIM2 splice variant negatively regulates store-operated calcium entry. Nat Commun 6:6899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moccia F, Zuccolo E, Soda T, Tanzi F, Guerra G, Mapelli L, Lodola F, D’Angelo E (2015) Stim and Orai proteins in neuronal Ca(2+) signaling and excitability. Front Cell Neurosci 9:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21:103–115

    Article  CAS  PubMed  Google Scholar 

  • Motiani RK, Abdullaev IF, Trebak M (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 285:19173–19183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, Schumacker PT (2011) Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol 31:3531–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes P, Demaurex N (2014) Redox regulation of store-operated Ca2+ entry. Antioxid Redox Signal 21:915–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oparka M, Walczak J, Malinska D, van Oppen LM, Szczepanowska J, Koopman WJ, Wieckowski MR (2016) Quantifying ROS levels using CM-H2DCFDA and HyPer. Methods 109:3–11

    Article  CAS  PubMed  Google Scholar 

  • Palty R, Stanley C, Isacoff EY (2015) Critical role for Orai1 C-terminal domain and TM4 in CRAC channel gating. Cell Res 25:963–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parvez S, Beck A, Peinelt C, Soboloff J, Lis A, Monteilh-Zoller M, Gill DL, Fleig A, Penner R (2008) STIM2 protein mediates distinct store-dependent and store-independent modes of CRAC channel activation. FASEB J 22:752–761

    Article  CAS  PubMed  Google Scholar 

  • Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins D, Groenendyk J, Touret N, Michalak M (2011) Modulation of STIM1 and capacitative Ca2+ entry by the endoplasmic reticulum luminal oxidoreductase ERp57. EMBO Rep 12:1182–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana A, Yen M, Sadaghiani AM, Malmersjo S, Park CY, Dolmetsch RE, Lewis RS (2015) Alternative splicing converts STIM2 from an activator to an inhibitor of store-operated calcium channels. J Cell Biol 209:653–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3:1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  • Saul S, Gibhardt CS, Schmidt B, Lis A, Pasieka B, Conrad D, Jung P, Gaupp R, Wonnenberg B, Diler E, Stanisz H, Vogt T, Schwarz EC, Bischoff M, Herrmann M, Tschernig T, Kappl R, Rieger H, Niemeyer BA, Bogeski I (2016) A calcium-redox feedback loop controls human monocyte immune responses: the role of ORAI Ca2+ channels. Sci Signal 9:ra26

    Article  PubMed  CAS  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindl R, Frischauf I, Bergsmann J, Muik M, Derler I, Lackner B, Groschner K, Romanin C (2009) Plasticity in Ca2+ selectivity of Orai1/Orai3 heteromeric channel. Proc Natl Acad Sci U S A 106:19623–19628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal AW (1996) The NADPH oxidase and chronic granulomatous disease. Mol Med Today 2:129–135

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Nam JH, Lee ES, Zhang Y, Kim SJ (2012) Inhibition of Ca(2+) release-activated Ca(2+) channel (CRAC) by curcumin and caffeic acid phenethyl ester (CAPE) via electrophilic addition to a cysteine residue of Orai1. Biochem Biophys Res Commun 428:56–61

    Article  CAS  PubMed  Google Scholar 

  • Song MY, Makino A, Yuan JX (2011) STIM2 contributes to enhanced store-operated Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Pulm Circ 1:84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  CAS  PubMed  Google Scholar 

  • Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135:110–122

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Zhang H, Liu J, Popugaeva E, Xu NJ, Feske S, White CL 3rd, Bezprozvanny I (2014) Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice. Neuron 82:79–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velmurugan GV, Huang H, Sun H, Candela J, Jaiswal MK, Beaman KD, Yamashita M, Prakriya M, White C (2015) Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production. Sci Signal 8:ra128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Moniaga CS, Nielsen S, Hara-Chikuma M (2016) Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun 471:191–197

    Article  CAS  PubMed  Google Scholar 

  • Wible RS, Sutter TR (2017) Soft Cysteine Signaling Network: the functional significance of cysteine in protein function and the soft acid/base thiol chemistry that facilitates cysteine modification. Chem Res Toxicol 30(3):729–762

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Carroll KS, Liebler DC (2016) The expanding landscape of the thiol redox proteome. Mol Cell Proteomics 15:1–11

    Article  PubMed  CAS  Google Scholar 

  • Yen M, Lokteva LA, Lewis RS (2016) Functional analysis of Orai1 concatemers supports a hexameric stoichiometry for the CRAC channel. Biophys J 111:1897–1907

    Article  CAS  PubMed  Google Scholar 

  • Yeung PS, Yamashita M, Prakriya M (2016) Pore opening mechanism of CRAC channels. Cell Calcium 16:30212–3. doi:10.1016/j.ceca.2016.12.006

    Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103:9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang W, Gonzalez-Cobos JC, Jardin I, Romanin C, Matrougui K, Trebak M (2014) Complex role of STIM1 in the activation of store-independent Orai1/3 channels. J Gen Physiol 143:345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Cai X, Loktionova NA, Wang X, Nwokonko RM, Wang Y, Rothberg BS, Trebak M, Gill DL (2016) The STIM1-binding site nexus remotely controls Orai1 channel gating. Nat Commun 7:13725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Cai X, Nwokonko RM, Loktionova NA, Wang Y, Gill DL (2017) The STIM-Orai coupling interface and gating of the Orai1 channel. Cell Calcium 16:30224–X. doi:10.1016/j.ceca.2017.01.001

    Google Scholar 

Download references

Acknowledgments

The author thanks M. Hoth for critical reading of the manuscript and Drs. Alansary and Bogeski for scientific input. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) SFB1027 C4, C7, SFB894 A2 and FOR2289 to B.A.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Niemeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Niemeyer, B.A. (2017). The STIM-Orai Pathway: Regulation of STIM and Orai by Thiol Modifications. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-Operated Ca²⁺ Entry (SOCE) Pathways. Advances in Experimental Medicine and Biology, vol 993. Springer, Cham. https://doi.org/10.1007/978-3-319-57732-6_6

Download citation

Publish with us

Policies and ethics