Skip to main content

Cardiac Remodeling and Disease: Current Understanding of STIM1/Orai1-Mediated Store-Operated Ca2+ Entry in Cardiac Function and Pathology

  • Chapter
  • First Online:
Store-Operated Ca²⁺ Entry (SOCE) Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 993))

Abstract

For a long time, Ca2+ entry into cardiomyocytes was considered the sole domain of the L-type Ca2+ channel. Recently, STIM1/Orai1-mediated store-operated Ca2+ entry has been also reported to participate to Ca2+ influx in cardiac cells and has emerged as a key player to alter Ca2+ in the cardiomyocyte. In this review, we will highlight accumulated knowledge about the presence and the potential contribution of STIM1/Orai1-dependent SOCE to cardiac function and its role in the cardiac pathogenesis. Overall, even if STIM1/Orai1 proteins are present in the heart, contradictory results have been reported regarding their contribution to cardiac physiology and pathology, pointing out the necessity of further investigations, a major challenge over the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benard L, Oh JG, Cacheux M, Lee A, Nonnenmacher M, Matasic DS, Kohlbrenner E, Kho C, Pavoine C, Hajjar RJ, Hulot JS (2016) Cardiac Stim1 silencing impairs adaptive hypertrophy and promotes heart failure through inactivation of mTORC2/Akt signaling. Circulation 133:1458–1471. Discussion 1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardo BC, Blaxall BC (2016) From bench to bedside: new approaches to therapeutic discovery for heart failure. Heart Lung Circ 25:425–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179

    Article  CAS  PubMed  Google Scholar 

  • Collins HE, He L, Zou L, Qu J, Zhou L, Litovsky SH, Yang Q, Young ME, Marchase RB, Chatham JC (2014) Stromal interaction molecule 1 is essential for normal cardiac homeostasis through modulation of ER and mitochondrial function. Am J Physiol Heart Circ Physiol 306:H1231–H1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correll RN, Goonasekera SA, van Berlo JH, Burr AR, Accornero F, Zhang H, Makarewich CA, York AJ, Sargent MA, Chen X, Houser SR, Molkentin JD (2015) STIM1 elevation in the heart results in aberrant Ca(2)(+) handling and cardiomyopathy. J Mol Cell Cardiol 87:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darbellay BS, Arnaudeau S, Bader CR, Konig S, Bernheim L (2011) STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. J Cell Biol 194:335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Rodriguez A, Ruiz-Hurtado G, Sabourin J, Gomez AM, Alvarez JL, Benitah JP (2015) Proarrhythmic effect of sustained EPAC activation on TRPC3/4 in rat ventricular cardiomyocytes. J Mol Cell Cardiol 87:74–78

    Article  CAS  PubMed  Google Scholar 

  • Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton JS, Buckley CL, Alvarez EM, Schorlemmer A, Stokes AJ (2014) The calcium release-activated calcium channel Orai1 represents a crucial component in hypertrophic compensation and the development of dilated cardiomyopathy. Channels (Austin) 8:35–48

    Article  CAS  Google Scholar 

  • Hulot JS, Fauconnier J, Ramanujam D, Chaanine A, Aubart F, Sassi Y, Merkle S, Cazorla O, Ouille A, Dupuis M, Hadri L, Jeong D, Muhlstedt S, Schmitt J, Braun A, Benard L, Saliba Y, Laggerbauer B, Nieswandt B, Lacampagne A, Hajjar RJ, Lompre AM, Engelhardt S (2011) Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation 124:796–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunton DL, Lucchesi PA, Pang Y, Cheng X, Dell’Italia LJ, Marchase RB (2002) Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem 277:14266–14273

    Article  CAS  PubMed  Google Scholar 

  • Hunton DL, Zou L, Pang Y, Marchase RB (2004) Adult rat cardiomyocytes exhibit capacitative calcium entry. Am J Physiol Heart Circ Physiol 286:H1124–H1132

    Article  CAS  PubMed  Google Scholar 

  • Kojima A, Kitagawa H, Omatsu-Kanbe M, Matsuura H, Nosaka S (2012) Presence of store-operated Ca2+ entry in C57BL/6J mouse ventricular myocytes and its suppression by sevoflurane. Br J Anaesth 109:352–360

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xin L, Benson VL, Allen DG, Ju YK (2015) Store-operated calcium entry and the localization of STIM1 and Orai1 proteins in isolated mouse sinoatrial node cells. Front Physiol 6:69

    PubMed  PubMed Central  Google Scholar 

  • Luo X, Hojayev B, Jiang N, Wang ZV, Tandan S, Rakalin A, Rothermel BA, Gillette TG, Hill JA (2012) STIM1-dependent store-operated Ca(2)(+) entry is required for pathological cardiac hypertrophy. J Mol Cell Cardiol 52:136–147

    Article  CAS  PubMed  Google Scholar 

  • Makarewich CA, Zhang H, Davis J, Correll RN, Trappanese DM, Hoffman NE, Troupes CD, Berretta RM, Kubo H, Madesh M, Chen X, Gao E, Molkentin JD, Houser SR (2014) Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circ Res 115:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen N, Biet M, Simard E, Beliveau E, Francoeur N, Guillemette G, Dumaine R, Grandbois M, Boulay G (2013) STIM1 participates in the contractile rhythmicity of HL-1 cells by moderating T-type Ca(2+) channel activity. Biochim Biophys Acta 1833:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Ohba T, Watanabe H, Murakami M, Sato T, Ono K, Ito H (2009) Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem Biophys Res Commun 389:172–176

    Article  CAS  PubMed  Google Scholar 

  • Parks C, Alam MA, Sullivan R, Mancarella S (2016) STIM1-dependent Ca(2+) microdomains are required for myofilament remodeling and signaling in the heart. Sci Rep 6:25372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakriya M (2013) Store-operated Orai channels: structure and function. Curr Top Membr 71:1–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roe AT, Frisk M, Louch WE (2015) Targeting cardiomyocyte Ca2+ homeostasis in heart failure. Curr Pharm Des 21:431–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabourin J, Robin E, Raddatz E (2011) A key role of TRPC channels in the regulation of electromechanical activity of the developing heart. Cardiovasc Res 92:226–236

    Article  CAS  PubMed  Google Scholar 

  • Sabourin J, Bartoli F, Antigny F, Gomez AM, Benitah JP (2016) Transient receptor potential canonical (TRPC)/Orai1-dependent store-operated Ca2+ channels: NEW TARGETS OF ALDOSTERONE IN CARDIOMYOCYTES. J Biol Chem 291:13394–13409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touchberry CD, Elmore CJ, Nguyen TM, Andresen JJ, Zhao X, Orange M, Weisleder N, Brotto M, Claycomb WC, Wacker MJ (2011) Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium. Biochem Biophys Res Commun 416:45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara A, Yasukochi M, Imanaga I, Nishi M, Takeshima H (2002) Store-operated Ca2+ entry uncoupled with ryanodine receptor and junctional membrane complex in heart muscle cells. Cell Calcium 31:89–96

    Article  CAS  PubMed  Google Scholar 

  • Voelkers M, Salz M, Herzog N, Frank D, Dolatabadi N, Frey N, Gude N, Friedrich O, Koch WJ, Katus HA, Sussman MA, Most P (2010) Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J Mol Cell Cardiol 48:1329–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkers M, Dolatabadi N, Gude N, Most P, Sussman MA, Hassel D (2012) Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. J Cell Sci 125:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL (2010) The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Umeda PK, Sharifov OF, Halloran BA, Tabengwa E, Grenett HE, Urthaler F, Wolkowicz PE (2012) Evidence that 2-aminoethoxydiphenyl borate provokes fibrillation in perfused rat hearts via voltage-independent calcium channels. Eur J Pharmacol 681:60–67

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li ZC, Zhang P, Poon E, Kong CW, Boheler KR, Huang Y, Li RA, Yao X (2015) Nitric oxide-cGMP-PKG pathway acts on Orai1 to inhibit the hypertrophy of human embryonic stem cell-derived cardiomyocytes. Stem Cells 33:2973–2984

    Article  CAS  PubMed  Google Scholar 

  • Wolkowicz PE, Huang J, Umeda PK, Sharifov OF, Tabengwa E, Halloran BA, Urthaler F, Grenett HE (2011) Pharmacological evidence for Orai channel activation as a source of cardiac abnormal automaticity. Eur J Pharmacol 668:208–216

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sun AY, Kim JJ, Graham V, Finch EA, Nepliouev I, Zhao G, Li T, Lederer WJ, Stiber JA, Pitt GS, Bursac N, Rosenberg PB (2015) STIM1-Ca2+ signaling modulates automaticity of the mouse sinoatrial node. Proc Natl Acad Sci U S A 112:E5618–E5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Li T, Brochet DX, Rosenberg PB, Lederer WJ (2015) STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes. Proc Natl Acad Sci U S A 112:E4792–E4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu-Mauldin X, Marsh SA, Zou L, Marchase RB, Chatham JC (2012) Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J Biol Chem 287:39094–39106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jean-Pierre Benitah and Fabrice Antigny for their careful reading. We thank the Attractivity grant 2014 from the University of Paris-Sud, Agence Nationale de la Recherche (ANR-13-BSV1-0023-01 and ANR-15-CE14-0005), and CORDDIM (Région Ile de France) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Sabourin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bartoli, F., Sabourin, J. (2017). Cardiac Remodeling and Disease: Current Understanding of STIM1/Orai1-Mediated Store-Operated Ca2+ Entry in Cardiac Function and Pathology. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-Operated Ca²⁺ Entry (SOCE) Pathways. Advances in Experimental Medicine and Biology, vol 993. Springer, Cham. https://doi.org/10.1007/978-3-319-57732-6_26

Download citation

Publish with us

Policies and ethics