Cardiac Remodeling and Disease: SOCE and TRPC Signaling in Cardiac Pathology

  • Petra EderEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 993)


TRPC channels have been suggested as potential candidates mediating store-operated Ca2+ entry (SOCE) in cardiomyocytes. There is increasing evidence that the TRPC isoforms TRPC1 and TRPC4 might fulfill the function as SOCs, in concert with or in parallel to the key players of SOCE, Orai1, and STIM1. Several other isoforms, e.g., TRPC3, TRPC6, and TRPC7, might rather associate to receptor-activated diacylglycerol (DAG)-sensitive ion channels. However, the exact activation mode has not been elucidated yet, given the characteristic of TRPC channels to heteromerize to unpredictable ion channel assemblies. Despite the incomplete information about TRPC activation, there is common agreement that they are crucial Ca2+ components in cardiac signaling and disease. All TRPC isoforms, TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, are differentially regulated in cardiac disease, and nearly all of them have been shown to impact cardiac signaling pathways that accelerate cardiac disease development. In particular, the calcineurin-nuclear factor of activated T-cell (NFAT) signaling pathway has repeatedly been linked to a TRPC-dependent Ca2+ influx in cardiomyocytes. Moreover, the protein kinases PKG and PKC have been found to modulate TRPC function and the hypertrophic response. Other signaling molecules, such as the serine/threonine kinase Ca2+/calmodulin-dependent protein kinase II (CamKII) or the oxidative stress molecule, NADPH oxidase 2 (NOX2), have also been related to TRPC-dependent effects in the heart.

The present chapter provides a comprehensive overview of TRPC channels as Ca2+ entities in cardiomyocytes, their interplay with Ca2+ signaling pathways, and role in cardiac pathology.


TRPC Calcineurin NFAT Cardiac hypertrophy Heart failure 


  1. Alvarez J, Coulombe A, Cazorla O, Ugur M, Rauzier JM, Magyar J, Mathieu EL, Boulay G, Souto R, Bideaux P, Salazar G, Rassendren F, Lacampagne A, Fauconnier J, Vassort G (2008) ATP/UTP activate cation-permeable channels with TRPC3/7 properties in rat cardiomyocytes. Am J Physiol Heart Circ Physiol 295:H21–H28CrossRefPubMedGoogle Scholar
  2. Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benard L, Oh JG, Cacheux M, Lee A, Nonnenmacher M, Matasic DS, Kohlbrenner E, Kho C, Pavoine C, Hajjar RJ, Hulot JS (2016) Cardiac Stim1 silencing impairs adaptive hypertrophy and promotes heart failure through inactivation of mTORC2/Akt signaling. Circulation 133:1458–1471. Discussion 1471CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205CrossRefPubMedGoogle Scholar
  5. Brenner JS, Dolmetsch RE (2007) TrpC3 regulates hypertrophy-associated gene expression without affecting myocyte beating or cell size. PLoS One 2:e802CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496CrossRefPubMedGoogle Scholar
  7. Camacho Londono JE, Tian Q, Hammer K, Schröder L, Camacho Londono J, Reil JC, He T, Oberhofer M, Mannebach S, Mathar I, Philipp SE, Tabellion W, Schweda F, Dietrich A, Kaestner L, Laufs U, Birnbaumer L, Flockerzi V, Freichel M, Lipp P (2015) A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J 36:2257–2266CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cartwright EJ, Oceandy D, Austin C, Neyses L (2011) Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. Sci China Life Sci 54:691–698CrossRefPubMedGoogle Scholar
  9. Chiang CS, Huang CH, Chieng H, Chang YT, Chang D, Chen JJ, Chen YC, Chen YH, Shin HS, Campbell KP, Chen CC (2009) The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice. Circ Res 104:522–530CrossRefPubMedGoogle Scholar
  10. Correll RN, Goonasekera SA, van Berlo JH, Burr AR, Accornero F, Zhang H, Makarewich CA, York AJ, Sargent MA, Chen X, Houser SR, Molkentin JD (2015) STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy. J Mol Cell Cardiol 87:38–47CrossRefPubMedPubMedCentralGoogle Scholar
  11. Davis J, Burr AR, Davis GF, Birnbaumer L, Molkentin JD (2012) A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 23:705–715CrossRefPubMedPubMedCentralGoogle Scholar
  12. Derler I, Jardin I, Romanin C (2016) Molecular mechanisms of STIM/Orai communication. Am J Physiol Cell Physiol 310:C643–C662PubMedPubMedCentralGoogle Scholar
  13. Dietrich A, Fahlbusch M, Gudermann T (2014) Classical transient receptor potential 1 (TRPC1): channel or channel regulator? Cells 3:939–962CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eder P, Molkentin JD (2011) TRPC channels as effectors of cardiac hypertrophy. Circ Res 108:265–272CrossRefPubMedGoogle Scholar
  15. Go LO, Moschella MC, Watras J, Handa KK, Fyfe BS, Marks AR (1995) Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 95:888–894CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gudermann T, Hofmann T, Mederos y Schnitzler M, Dietrich A (2004) Activation, subunit composition and physiological relevance of DAG-sensitive TRPC proteins. Novartis Found Symp 258:103–118. Discussion 118–122, 155–159, 263–266CrossRefPubMedGoogle Scholar
  17. Huang B, Qin D, Deng L, Boutjdir M, El-Sherif N (2000) Reexpression of T-type Ca2+ channel gene and current in post-infarction remodeled rat left ventricle. Cardiovasc Res 46:442–449CrossRefPubMedGoogle Scholar
  18. Huang J, van Breemen C, Kuo KH, Hove-Madsen L, Tibbits GF (2006) Store-operated Ca2+ entry modulates sarcoplasmic reticulum Ca2+ loading in neonatal rabbit cardiac ventricular myocytes. Am J Physiol Cell Physiol 290:C1572–C1582CrossRefPubMedGoogle Scholar
  19. Hulot JS, Fauconnier J, Ramanujam D, Chaanine A, Aubart F, Sassi Y, Merkle S, Cazorla O, Ouillé A, Dupuis M, Hadri L, Jeong D, Mühlstedt S, Schmitt J, Braun A, Benard L, Saliba Y, Laggerbauer B, Nieswandt B, Lacampagne A, Hajjar RJ, Lompré AM, Engelhardt S (2011) Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation 124:796–805CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hunton DL, Lucchesi PA, Pang Y, Cheng X, Dell’Italia LJ, Marchase RB (2002) Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem 277:14266–14273CrossRefPubMedGoogle Scholar
  21. Hunton DL, Zou L, Pang Y, Marchase RB (2004) Adult rat cardiomyocytes exhibit capacitative calcium entry. Am J Physiol Heart Circ Physiol 286:H1124–H1132CrossRefPubMedGoogle Scholar
  22. Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y, Li Y, Nakagawa Y, Usami S, Fujiwara M, Yamada Y, Minami T, Ueshima K, Nakao K (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106:1849–1860CrossRefPubMedGoogle Scholar
  23. Kirschmer N, Bandleon S, von Ehrlich-Treuenstätt V, Hartmann S, Schaaf A, Lamprecht AK, Miranda-Laferte E, Langsenlehner T, Ritter O, Eder P (2016) TRPC4α and TRPC4β similarly affect neonatal cardiomyocyte survival during chronic GPCR stimulation. PLoS One 11:e0168446CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kitajima N, Numaga-Tomita T, Watanabe M, Kuroda T, Nishimura A, Miyano K, Yasuda S, Kuwahara K, Sato Y, Ide T, Birnbaumer L, Sumimoto H, Mori Y, Nishida M (2016) TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Sci Rep 6:37001CrossRefPubMedPubMedCentralGoogle Scholar
  25. Klaiber M, Dankworth B, Kruse M, Hartmann M, Nikolaev VO, Yang RB, Völker K, Gassner B, Oberwinkler H, Feil R, Freichel M, Groschner K, Skryabin BV, Frantz S, Birnbaumer L, Pongs O, Kuhn M (2011) A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide. Proc Natl Acad Sci USA 108:18500–18505CrossRefPubMedPubMedCentralGoogle Scholar
  26. Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370CrossRefPubMedGoogle Scholar
  27. Kockskämper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD (2008) Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 45:128–147CrossRefPubMedPubMedCentralGoogle Scholar
  28. Koitabashi N, Aiba T, Hesketh GG, Rowell J, Zhang M, Takimoto E, Tomaselli GF, Kass DA (2010) Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation Novel mechanism of cardiac stress modulation by PDE5 inhibition. J Mol Cell Cardiol 48:713–724CrossRefPubMedGoogle Scholar
  29. Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116:3114–3126CrossRefPubMedPubMedCentralGoogle Scholar
  30. Luo X, Hojayev B, Jiang N, Wang ZV, Tandan S, Rakalin A, Rothermel BA, Gillette TG, Hill JA (2012) STIM1-dependent store-operated Ca2+ entry is required for pathological cardiac hypertrophy. J Mol Cell Cardiol 52:136–147CrossRefPubMedGoogle Scholar
  31. Makarewich CA, Zhang H, Davis J, Correll RN, Trappanese DM, Hoffman NE, Troupes CD, Berretta RM, Kubo H, Madesh M, Chen X, Gao E, Molkentin JD, Houser SR (2014) Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circ Res 115:567–580CrossRefPubMedPubMedCentralGoogle Scholar
  32. Molkentin JD (2013) Parsing good versus bad signaling pathways in the heart: role of calcineurin-nuclear factor of activated T-cells. Circ Res 113:16–19CrossRefPubMedGoogle Scholar
  33. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nakamura T, Ranek MJ, Lee DI, Shalkey Hahn V, Kim C, Eaton P, Kass DA (2015) Prevention of PKG1α oxidation augments cardioprotection in the stressed heart. J Clin Invest 125:2468–2472CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J 20:1660–1670CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nakayama H, Bodi I, Maillet M, DeSantiago J, Domeier TL, Mikoshiba K, Lorenz JN, Blatter LA, Bers DM, Molkentin JD (2010) The IP3 receptor regulates cardiac hypertrophy in response to select stimuli. Circ Res 107:659–666CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nuss HB, Houser SR (1993) T-type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes. Circ Res 73:777–782CrossRefPubMedGoogle Scholar
  38. Oceandy D, Stanley PJ, Cartwright EJ, Neyses L (2007) The regulatory function of plasma-membrane Ca(2+)-ATPase (PMCA) in the heart. Biochem Soc Trans 35:927–930CrossRefPubMedGoogle Scholar
  39. Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, Mori Y, Ono K, Iijima T, Ito H (2007) Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 42:498–507CrossRefPubMedGoogle Scholar
  40. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370CrossRefPubMedGoogle Scholar
  41. Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316CrossRefPubMedPubMedCentralGoogle Scholar
  42. Orsborne C, Chaggar PS, Shaw SM, Williams SG (2017) The renin-angiotensin-aldosterone system in heart failure for the non-specialist: the past, the present and the future. Postgrad Med J 93:29–37CrossRefPubMedGoogle Scholar
  43. Poteser M, Schleifer H, Lichtenegger M, Schernthaner M, Stockner T, Kappe CO, Glasnov TN, Romanin C, Groschner K (2011) PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. Proc Natl Acad Sci USA 108:10556–10561CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sabourin J, Bartoli F, Antigny F, Gomez AM, Benitah JP (2016) Transient Receptor Potential Canonical (TRPC)/Orai1-dependent Store-operated Ca2+ Channels: NEW TARGETS OF ALDOSTERONE IN CARDIOMYOCYTES. J Biol Chem 291:13394–13409CrossRefPubMedPubMedCentralGoogle Scholar
  45. Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sumimoto H, Mori Y, Makino N (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294:205–215CrossRefPubMedGoogle Scholar
  46. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105:1023–1030CrossRefPubMedPubMedCentralGoogle Scholar
  47. Shan D, Marchase RB, Chatham JC (2008) Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. Am J Physiol Cell Physiol 294:C833–C841CrossRefPubMedPubMedCentralGoogle Scholar
  48. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–682CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wu X, Chang B, Blair NS, Sargent M, York AJ, Robbins J, Shull GE, Molkentin JD (2009) Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents. J Clin Invest 119:976–985PubMedPubMedCentralGoogle Scholar
  51. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci USA 107:7000–7005CrossRefPubMedPubMedCentralGoogle Scholar
  52. Xie J, Cha SK, An SW, Kuro-O M, Birnbaumer L, Huang CL (2012) Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun 3:1238CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Internal Medicine I, Comprehensive Heart Failure Center WürzburgUniversity Hospital WürzburgWürzburgGermany

Personalised recommendations