Advertisement

Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders

  • Jyoti Tanwar
  • Mohamed TrebakEmail author
  • Rajender K. MotianiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 993)

Abstract

Store-operated Ca2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca2+ levels and transmits the message to plasma membrane Ca2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca2+ influx into the cells. This increase in cytosolic Ca2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.

Keywords

STIM1 Orai1 Orai3 Vascular diseases Restenosis Hypertension Atherosclerosis 

Notes

Acknowledgments

Mohamed Trebak is supported by R01HL123364, R01HL097111, and R21AG050072 grants from the NIH, grant NPRP8-110-3-021 from the Qatar National Research Fund (GNRF), and grant 14GRNT18880008 from the AHA. Rajender K Motiani is an INSPIRE Faculty supported by the Department of Science and Technology, India. The authors have no conflict of interests to declare.

References

  1. Ahmad F, Boulaftali Y, Greene TK, Ouellette TD, Poncz M, Feske S, Bergmeier W (2011) Relative contributions of stromal interaction molecule 1 and CalDAG-GEFI to calcium-dependent platelet activation and thrombosis. J Thromb Haemost 9(10):2077–2086PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alexopoulos N, Raggi P (2009) Calcification in atherosclerosis. Nat Rev Cardiol 6(11):681–688PubMedCrossRefGoogle Scholar
  3. Ambily A, Kaiser WJ, Pierro C, Chamberlain EV, Li Z, Jones CI, Kassouf N, Gibbins JM, Authi KS (2014) The role of plasma membrane STIM1 and Ca(2+)entry in platelet aggregation. STIM1 binds to novel proteins in human platelets. Cell Signal 26(3):502–511PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aubart FC, Sassi Y, Coulombe A, Mougenot N, Vrignaud C, Leprince P, Lechat P, Lompre AM, Hulot JS (2009) RNA interference targeting STIM1 suppresses vascular smooth muscle cell proliferation and neointima formation in the rat. Mol Ther 17(3):455–462PubMedCrossRefGoogle Scholar
  5. Authi KS (2009) Orai1: a channel to safer antithrombotic therapy. Blood 113(9):1872–1873PubMedCrossRefGoogle Scholar
  6. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A 103(45):16704–16709PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bandyopadhyay BC, Pingle SC, Ahern GP (2011) Store-operated Ca(2)+ signaling in dendritic cells occurs independently of STIM1. J Leukoc Biol 89(1):57–62PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baryshnikov SG, Pulina MV, Zulian A, Linde CI, Golovina VA (2009) Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger and plasma membrane Ca2+ pump in proliferating human arterial myocytes. Am J Physiol Cell Physiol 297(5):C1103–C1112PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bergmeier W, Stefanini L (2009) Novel molecules in calcium signaling in platelets. J Thromb Haemost 7(Suppl 1):187–190PubMedCrossRefGoogle Scholar
  10. Bergmeier W, Oh-Hora M, McCarl CA, Roden RC, Bray PF, Feske S (2009) R93W mutation in Orai1 causes impaired calcium influx in platelets. Blood 113(3):675–678PubMedPubMedCentralCrossRefGoogle Scholar
  11. Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, Wultsch T, Eilers J, Meuth SG, Stoll G, Nieswandt B (2009) STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci Signal 2(93):ra67PubMedCrossRefGoogle Scholar
  12. Berna-Erro A, Jardin I, Smani T, Rosado JA (2016) Regulation of platelet function by Orai, STIM and TRP. Adv Exp Med Biol 898:157–181PubMedCrossRefGoogle Scholar
  13. Berra-Romani R, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2008) Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol Cell Physiol 295(3):C779–C790PubMedPubMedCentralCrossRefGoogle Scholar
  14. Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193PubMedCrossRefGoogle Scholar
  15. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312(5992):315–321PubMedCrossRefGoogle Scholar
  16. Bisaillon JM, Motiani RK, Gonzalez-Cobos JC, Potier M, Halligan KE, Alzawahra WF, Barroso M, Singer HA, Jourd’heuil D, Trebak M (2010) Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration. Am J Physiol Cell Physiol 298(5):C993–C1005PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131(7):1327–1339PubMedPubMedCentralCrossRefGoogle Scholar
  18. Braun A, Varga-Szabo D, Kleinschnitz C, Pleines I, Bender M, Austinat M, Bosl M, Stoll G, Nieswandt B (2009) Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113(9):2056–2063PubMedCrossRefGoogle Scholar
  19. Braun A, Vogtle T, Varga-Szabo D, Nieswandt B (2011) STIM and Orai in hemostasis and thrombosis. Front Biosci (Landmark Ed) 16:2144–2160CrossRefGoogle Scholar
  20. Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88(4):1491–1545PubMedCrossRefGoogle Scholar
  21. Cortes SF, Lemos VS, Stoclet JC (1997) Alterations in calcium stores in aortic myocytes from spontaneously hypertensive rats. Hypertension 29(6):1322–1328PubMedCrossRefGoogle Scholar
  22. de Groot D, Pasterkamp G, Hoefer IE (2009) Cardiovascular risk factors and collateral artery formation. Eur J Clin Invest 39(12):1036–1047PubMedCrossRefGoogle Scholar
  23. DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282(24):17548–17556PubMedCrossRefGoogle Scholar
  24. Devynck MA (2002) Gender and vascular smooth muscle cells: a direct influence on Ca2+ handling? J Hypertens 20(11):2139–2140PubMedCrossRefGoogle Scholar
  25. Edwards JM, Neeb ZP, Alloosh MA, Long X, Bratz IN, Peller CR, Byrd JP, Kumar S, Obukhov AG, Sturek M (2010) Exercise training decreases store-operated Ca2+entry associated with metabolic syndrome and coronary atherosclerosis. Cardiovasc Res 85(3):631–640PubMedCrossRefGoogle Scholar
  26. Elezi S, Kastrati A, Neumann FJ, Hadamitzky M, Dirschinger J, Schomig A (1998) Vessel size and long-term outcome after coronary stent placement. Circulation 98(18):1875–1880PubMedCrossRefGoogle Scholar
  27. Elvers M, Herrmann A, Seizer P, Munzer P, Beck S, Schonberger T, Borst O, Martin-Romero FJ, Lang F, May AE, Gawaz M (2012) Intracellular cyclophilin A is an important Ca(2+) regulator in platelets and critically involved in arterial thrombus formation. Blood 120(6):1317–1326PubMedCrossRefGoogle Scholar
  28. Feng JM, YK H, Xie LH, Colwell CS, Shao XM, Sun XP, Chen B, Tang H, Campagnoni AT (2006) Golli protein negatively regulates store depletion-induced calcium influx in T cells. Immunity 24(6):717–727PubMedCrossRefGoogle Scholar
  29. Ferdaus MZ, Xiao B, Ohara H, Nemoto K, Harada Y, Saar K, Hubner N, Isomura M, Nabika T (2014) Identification of Stim1 as a candidate gene for exaggerated sympathetic response to stress in the stroke-prone spontaneously hypertensive rat. PLoS One 9(4):e95091PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fernandez RA, Wan J, Song S, Smith KA, Gu Y, Tauseef M, Tang H, Makino A, Mehta D, Yuan JX (2015) Upregulated expression of STIM2, TRPC6, and Orai2 contributes to the transition of pulmonary arterial smooth muscle cells from a contractile to proliferative phenotype. Am J Physiol Cell Physiol 308(8):C581–C593PubMedPubMedCentralCrossRefGoogle Scholar
  31. Feske S (2010) CRAC channelopathies. Pflugers Arch 460(2):417–435PubMedPubMedCentralCrossRefGoogle Scholar
  32. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185PubMedCrossRefGoogle Scholar
  33. Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman M, Heuser R, Almond D, Teirstein PS, Fish RD, Colombo A, Brinker J, Moses J, Shaknovich A, Hirshfeld J, Bailey S, Ellis S, Rake R, Goldberg S (1994) A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med 331(8):496–501PubMedCrossRefGoogle Scholar
  34. Galan C, Zbidi H, Bartegi A, Salido GM, Rosado JA (2009) STIM1, Orai1 and hTRPC1 are important for thrombin- and ADP-induced aggregation in human platelets. Arch Biochem Biophys 490(2):137–144PubMedCrossRefGoogle Scholar
  35. Giachini FR, Chiao CW, Carneiro FS, Lima VV, Carneiro ZN, Dorrance AM, Tostes RC, Webb RC (2009a) Increased activation of stromal interaction molecule-1/Orai-1 in aorta from hypertensive rats: a novel insight into vascular dysfunction. Hypertension 53(2):409–416PubMedCrossRefGoogle Scholar
  36. Giachini FR, Webb RC, Tostes RC (2009b) STIM and Orai proteins: players in sexual differences in hypertension-associated vascular dysfunction? Clin Sci (Lond) 118(6):391–396CrossRefGoogle Scholar
  37. Giachini FR, Lima VV, Filgueira FP, Dorrance AM, Carvalho MH, Fortes ZB, Webb RC, Tostes RC (2012) STIM1/Orai1 contributes to sex differences in vascular responses to calcium in spontaneously hypertensive rats. Clin Sci (Lond) 122(5):215–226CrossRefGoogle Scholar
  38. Gilio K, van Kruchten R, Braun A, Berna-Erro A, Feijge MA, Stegner D, van der Meijden PE, Kuijpers MJ, Varga-Szabo D, Heemskerk JW, Nieswandt B (2010) Roles of platelet STIM1 and Orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation. J Biol Chem 285(31):23629–23638PubMedPubMedCentralCrossRefGoogle Scholar
  39. Golovina VA (1999) Cell proliferation is associated with enhanced capacitative Ca(2+) entry in human arterial myocytes. Am J Physiol 277(2 Pt 1):C343–C349PubMedGoogle Scholar
  40. Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca(2+) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280(2):H746–H755PubMedGoogle Scholar
  41. Gonzalez-Cobos JC, Zhang X, Zhang W, Ruhle B, Motiani RK, Schindl R, Muik M, Spinelli AM, Bisaillon JM, Shinde AV, Fahrner M, Singer HA, Matrougui K, Barroso M, Romanin C, Trebak M (2013) Store-independent Orai1/3 channels activated by intracrine leukotriene C4: role in neointimal hyperplasia. Circ Res 112(7):1013–1025PubMedPubMedCentralCrossRefGoogle Scholar
  42. Goulopoulou S, Webb RC (2014) Symphony of vascular contraction: how smooth muscle cells lose harmony to signal increased vascular resistance in hypertension. Hypertension 63(3):e33–e39PubMedPubMedCentralCrossRefGoogle Scholar
  43. Grosse J, Braun A, Varga-Szabo D, Beyersdorf N, Schneider B, Zeitlmann L, Hanke P, Schropp P, Muhlstedt S, Zorn C, Huber M, Schmittwolf C, Jagla W, Yu P, Kerkau T, Schulze H, Nehls M, Nieswandt B (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117(11):3540–3550PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gruszczynska-Biegala J, Kuznicki J (2013) Native STIM2 and ORAI1 proteins form a calcium-sensitive and thapsigargin-insensitive complex in cortical neurons. J Neurochem 126(6):727–738PubMedCrossRefGoogle Scholar
  45. Guo RW, Wang H, Gao P, Li MQ, Zeng CY, Yu Y, Chen JF, Song MB, Shi YK, Huang L (2009) An essential role for stromal interaction molecule 1 in neointima formation following arterial injury. Cardiovasc Res 81(4):660–668PubMedCrossRefGoogle Scholar
  46. Guo RW, Yang LX, Li MQ, Pan XH, Liu B, Deng YL (2012) Stim1- and Orai1-mediated store-operated calcium entry is critical for angiotensin II-induced vascular smooth muscle cell proliferation. Cardiovasc Res 93(2):360–370PubMedCrossRefGoogle Scholar
  47. Hagedorn I, Vogtle T, Nieswandt B (2010) Arterial thrombus formation. Novel mechanisms and targets. Hamostaseologie 30(3):127–135PubMedGoogle Scholar
  48. Hajjar I, Kotchen JM, Kotchen TA (2006) Hypertension: trends in prevalence, incidence, and control. Annu Rev Public Health 27:465–490PubMedCrossRefGoogle Scholar
  49. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263PubMedCrossRefGoogle Scholar
  50. Hopson KP, Truelove J, Chun J, Wang Y, Waeber C (2011) S1P activates store-operated calcium entry via receptor- and non-receptor-mediated pathways in vascular smooth muscle cells. Am J Physiol Cell Physiol 300(4):C919–C926PubMedCrossRefGoogle Scholar
  51. Hoth M, Niemeyer BA (2013) The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr Top Membr 71:237–271PubMedCrossRefGoogle Scholar
  52. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356PubMedCrossRefGoogle Scholar
  53. Hou X, Chen J, Luo Y, Liu F, Xu G, Gao Y (2013) Silencing of STIM1 attenuates hypoxia-induced PASMCs proliferation via inhibition of the SOC/Ca2+/NFAT pathway. Respir Res 14:2PubMedPubMedCentralCrossRefGoogle Scholar
  54. House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456(5):769–785PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jing J, He L, Sun A, Quintana A, Ding Y, Ma G, Tan P, Liang X, Zheng X, Chen L, Shi X, Zhang SL, Zhong L, Huang Y, Dong MQ, Walker CL, Hogan PG, Wang Y, Zhou Y (2015) Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca(2)(+) influx. Nat Cell Biol 17(10):1339–1347PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kannel WB (1974) Role of blood pressure in cardiovascular morbidity and mortality. Prog Cardiovasc Dis 17(1):5–24PubMedCrossRefGoogle Scholar
  57. Kassan M, Ait-Aissa K, Radwan E, Mali V, Haddox S, Gabani M, Zhang W, Belmadani S, Irani K, Trebak M, Matrougui K (2016) Essential role of smooth muscle STIM1 in hypertension and cardiovascular dysfunction. Arterioscler Thromb Vasc Biol 36(9):1900–1909PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kawai-Kowase K, Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292(1):C59–C69PubMedCrossRefGoogle Scholar
  59. Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385(1):49–54PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kitazono T, Ago T, Kamouchi M, Santa N, Ooboshi H, Fujishima M, Ibayashi S (2002) Increased activity of calcium channels and Rho-associated kinase in the basilar artery during chronic hypertension in vivo. J Hypertens 20(5):879–884PubMedCrossRefGoogle Scholar
  61. Konig S, Browne S, Doleschal B, Schernthaner M, Poteser M, Machler H, Wittchow E, Braune M, Muik M, Romanin C, Groschner K (2013) Inhibition of Orai1-mediated Ca(2+) entry is a key mechanism of the antiproliferative action of sirolimus in human arterial smooth muscle. Am J Physiol Heart Circ Physiol 305(11):H1646–H1657PubMedCrossRefGoogle Scholar
  62. Kraft R (2015) STIM and ORAI proteins in the nervous system. Channels (Austin) 9(5):245–252CrossRefGoogle Scholar
  63. Lang F, Munzer P, Gawaz M, Borst O (2013) Regulation of STIM1/Orai1-dependent Ca2+ signalling in platelets. Thromb Haemost 110(5):925–930PubMedCrossRefGoogle Scholar
  64. Leung FP, Yung LM, Yao X, Laher I, Huang Y (2008) Store-operated calcium entry in vascular smooth muscle. Br J Pharmacol 153(5):846–857PubMedCrossRefGoogle Scholar
  65. Li H, Jiang Z, Liu X, Yang Z (2015) Higher plasma level of STIM1, OPG are correlated with stent restenosis after PCI. Int J Clin Exp Med 8(11):21089–21097PubMedPubMedCentralGoogle Scholar
  66. Liang SJ, Zeng DY, Mai XY, Shang JY, Wu QQ, Yuan JN, Yu BX, Zhou P, Zhang FR, Liu YY, Lv XF, Liu J, Ou JS, Qian JS, Zhou JG (2016) Inhibition of Orai1 store-operated calcium channel prevents foam cell formation and atherosclerosis. Arterioscler Thromb Vasc Biol 36(4):618–628PubMedCrossRefGoogle Scholar
  67. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store -depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241PubMedPubMedCentralCrossRefGoogle Scholar
  68. Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 104(22):9301–9306PubMedPubMedCentralCrossRefGoogle Scholar
  69. Liu Z, Zhang C, Dronadula N, Li Q, Rao GN (2005) Blockade of nuclear factor of activated T cells activation signaling suppresses balloon injury-induced neointima formation in a rat carotid artery model. J Biol Chem 280(15):14700–14708PubMedCrossRefGoogle Scholar
  70. Loukotova J, Kunes J, Zicha J (2002) Gender-dependent difference in cell calcium handling in VSMC isolated from SHR: the effect of angiotensin II. J Hypertens 20(11):2213–2219PubMedCrossRefGoogle Scholar
  71. Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454(7203):538–542PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mancarella S, Potireddy S, Wang Y, Gao H, Gandhirajan RK, Autieri M, Scalia R, Cheng Z, Wang H, Madesh M, Houser SR, Gill DL (2013) Targeted STIM deletion impairs calcium homeostasis, NFAT activation, and growth of smooth muscle. FASEB J 27(3):893–906PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mazzucato M, Pradella P, Cozzi MR, De Marco L, Ruggeri ZM (2002) Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood 100(8):2793–2800PubMedCrossRefGoogle Scholar
  74. McCarl CA, Picard C, Khalil S, Kawasaki T, Rother J, Papolos A, Kutok J, Hivroz C, Ledeist F, Plogmann K, Ehl S, Notheis G, Albert MH, Belohradsky BH, Kirschner J, Rao A, Fischer A, Feske S (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124(6):1311–1318.e1317PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281(34):24979–24990PubMedPubMedCentralCrossRefGoogle Scholar
  76. Merlet E, Atassi F, Motiani RK, Mougenot N, Jacquet A, Nadaud S, Capiod T, Trebak M, Lompre AM, Marchand A (2013) miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat. Cardiovasc Res 98(3):458–468PubMedPubMedCentralCrossRefGoogle Scholar
  77. Miao Y, Miner C, Zhang L, Hanson PI, Dani A, Vig M (2013) An essential and NSF independent role for alpha-SNAP in store-operated calcium entry. Elife 2:e00802PubMedPubMedCentralCrossRefGoogle Scholar
  78. Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415(1):81–47PubMedCrossRefGoogle Scholar
  79. Mignen O, Thompson JL, Shuttleworth TJ (2008) Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J Physiol 586(2):419–425PubMedCrossRefGoogle Scholar
  80. Moccia F, Zuccolo E, Soda T, Tanzi F, Guerra G, Mapelli L, Lodola F, D’Angelo E (2015) Stim and Orai proteins in neuronal Ca(2+) signaling and excitability. Front Cell Neurosci 9:153PubMedPubMedCentralCrossRefGoogle Scholar
  81. Motiani RK, Abdullaev IF, Trebak M (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 285(25):19173–19183PubMedPubMedCentralCrossRefGoogle Scholar
  82. Motiani RK, Stolwijk JA, Newton RL, Zhang X, Trebak M (2013a) Emerging roles of Orai3 in pathophysiology. Channels (Austin) 7(5):392–401CrossRefGoogle Scholar
  83. Motiani RK, Zhang X, Harmon KE, Keller RS, Matrougui K, Bennett JA, Trebak M (2013b) Orai3 is an estrogen receptor alpha-regulated Ca(2)(+) channel that promotes tumorigenesis. FASEB J 27(1):63–75PubMedPubMedCentralCrossRefGoogle Scholar
  84. Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284(13):8421–8426PubMedPubMedCentralCrossRefGoogle Scholar
  85. Nagai M, Hoshide S, Kario K (2010) Hypertension and dementia. Am J Hypertens 23(2):116–124PubMedCrossRefGoogle Scholar
  86. Ogawa A, Firth AL, Smith KA, Maliakal MV, Yuan JX (2012) PDGF enhances store-operated Ca2+ entry by upregulating STIM1/Orai1 via activation of Akt/mTOR in human pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 302(2):C405–C411PubMedCrossRefGoogle Scholar
  87. Oka T, Hori M, Ozaki H (2005) Microtubule disruption suppresses allergic response through the inhibition of calcium influx in the mast cell degranulation pathway. J Immunol 174(8):4584–4589PubMedCrossRefGoogle Scholar
  88. Oritani K, Kincade PW (1996) Identification of stromal cell products that interact with pre-B cells. J Cell Biol 134(3):771–782PubMedCrossRefGoogle Scholar
  89. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3):767–801PubMedCrossRefGoogle Scholar
  90. Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149(2):425–438PubMedCrossRefGoogle Scholar
  91. Parekh AB (2006) Cell biology: cracking the calcium entry code. Nature 441(7090):163–165PubMedCrossRefGoogle Scholar
  92. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810PubMedCrossRefGoogle Scholar
  93. Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890PubMedPubMedCentralCrossRefGoogle Scholar
  94. Parker NJ, Begley CG, Smith PJ, Fox RM (1996) Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37(2):253–256PubMedCrossRefGoogle Scholar
  95. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8(7):771–773PubMedCrossRefGoogle Scholar
  96. Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456(7218):116–120PubMedPubMedCentralCrossRefGoogle Scholar
  97. Picard C, McCarl CA, Papolos A, Khalil S, Luthy K, Hivroz C, LeDeist F, Rieux-Laucat F, Rechavi G, Rao A, Fischer A, Feske S (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360(19):1971–1980PubMedPubMedCentralCrossRefGoogle Scholar
  98. Potier M, Trebak M (2008) New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch 457(2):405–415PubMedPubMedCentralCrossRefGoogle Scholar
  99. Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, Trebak M (2009) Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J 23(8):2425–2437PubMedPubMedCentralCrossRefGoogle Scholar
  100. Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95(4):1383–1436PubMedPubMedCentralCrossRefGoogle Scholar
  101. Pulina MV, Zulian A, Baryshnikov SG, Linde CI, Karashima E, Hamlyn JM, Ferrari P, Blaustein MP, Golovina VA (2013) Cross talk between plasma membrane Na(+)/Ca (2+) exchanger-1 and TRPC/Orai-containing channels: key players in arterial hypertension. Adv Exp Med Biol 961:365–374PubMedCrossRefGoogle Scholar
  102. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12PubMedCrossRefGoogle Scholar
  103. Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11(10):611–624PubMedCrossRefGoogle Scholar
  104. Raines EW (2004) PDGF and cardiovascular disease. Cytokine Growth Factor Rev 15(4):237–254PubMedCrossRefGoogle Scholar
  105. Rink TJ, Sage SO (1990) Calcium signaling in human platelets. Annu Rev Physiol 52:431–449PubMedCrossRefGoogle Scholar
  106. Rodriguez-Moyano M, Diaz I, Dionisio N, Zhang X, Avila-Medina J, Calderon-Sanchez E, Trebak M, Rosado JA, Ordonez A, Smani T (2013) Urotensin-II promotes vascular smooth muscle cell proliferation through store-operated calcium entry and EGFR transactivation. Cardiovasc Res 100(2):297–306PubMedPubMedCentralCrossRefGoogle Scholar
  107. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ruhle B, Trebak M (2013) Emerging roles for native Orai Ca2+ channels in cardiovascular disease. Curr Top Membr 71:209–235PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sabbioni S, Barbanti-Brodano G, Croce CM, Negrini M (1997) GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res 57(20):4493–4497PubMedGoogle Scholar
  110. Safar ME, Smulyan H (2004) Hypertension in women. Am J Hypertens 17(1):82–87PubMedCrossRefGoogle Scholar
  111. Schaff UY, Dixit N, Procyk E, Yamayoshi I, Tse T, Simon SI (2010) Orai1 regulates intracellular calcium, arrest, and shape polarization during neutrophil recruitment in shear flow. Blood 115(3):657–666PubMedPubMedCentralCrossRefGoogle Scholar
  112. Schuhmann MK, Stegner D, Berna-Erro A, Bittner S, Braun A, Kleinschnitz C, Stoll G, Wiendl H, Meuth SG, Nieswandt B (2010) Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol 184(3):1536–1542PubMedCrossRefGoogle Scholar
  113. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Jacques Goy J, van den Heuvel P, Delcan J, Morel M (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 331(8):489–495PubMedCrossRefGoogle Scholar
  114. Sharma S, Quintana A, Findlay GM, Mettlen M, Baust B, Jain M, Nilsson R, Rao A, Hogan PG (2013) An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 499(7457):238–242PubMedCrossRefGoogle Scholar
  115. Shinde AV, Motiani RK, Zhang X, Abdullaev IF, Adam AP, Gonzalez-Cobos JC, Zhang W, Matrougui K, Vincent PA, Trebak M (2013) STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry. Sci Signal 6(267):ra18PubMedPubMedCentralCrossRefGoogle Scholar
  116. Shuttleworth TJ (2009) Arachidonic acid, ARC channels, and Orai proteins. Cell Calcium 45(6):602–610PubMedPubMedCentralCrossRefGoogle Scholar
  117. Shuttleworth TJ (2012) STIM and Orai proteins and the non-capacitative ARC channels. Front Biosci (Landmark Ed) 17:847–860CrossRefGoogle Scholar
  118. Smyth JT, DeHaven WI, Bird GS, Putney JW Jr (2007) Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. J Cell Sci 120(Pt 21):3762–3771PubMedPubMedCentralCrossRefGoogle Scholar
  119. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281(30):20661–20665PubMedCrossRefGoogle Scholar
  120. Song MY, Makino A, Yuan JX (2011) STIM2 contributes to enhanced store-operated Ca entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Pulm Circ 1(1):84–94PubMedPubMedCentralCrossRefGoogle Scholar
  121. Spinelli AM, Trebak M (2016) Orai channel-mediated Ca2+ signals in vascular and airway smooth muscle. Am J Physiol Cell Physiol 310(6):C402–C413PubMedPubMedCentralCrossRefGoogle Scholar
  122. Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y (2010) A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 12(5):436–446PubMedPubMedCentralCrossRefGoogle Scholar
  123. Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281(47):35855–35862PubMedCrossRefGoogle Scholar
  124. Stolwijk JA, Zhang X, Gueguinou M, Zhang W, Matrougui K, Renken C, Trebak M (2016) Calcium signaling is dispensable for receptor-regulation of endothelial barrier function. J Biol Chem 291(44):22894–22912PubMedCrossRefGoogle Scholar
  125. Takahashi Y, Watanabe H, Murakami M, Ono K, Munehisa Y, Koyama T, Nobori K, Iijima T, Ito H (2007) Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochem Biophys Res Commun 361(4):934–940PubMedCrossRefGoogle Scholar
  126. Takemura H, Hughes AR, Thastrup O, Putney JW Jr (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 264(21):12266–12271PubMedGoogle Scholar
  127. Thompson JL, Mignen O, Shuttleworth TJ (2013) The ARC channel—an endogenous store-independent Orai channel. Curr Top Membr 71:125–148PubMedCrossRefGoogle Scholar
  128. Trebak M, St J Bird G, McKay RR, Birnbaumer L, Putney JW Jr (2003a) Signaling mechanism for receptor-activated canonical transient receptor potential 3 (TRPC3) channels. J Biol Chem 278(18):16244–16252PubMedCrossRefGoogle Scholar
  129. Trebak M, Vazquez G, Bird GS, Putney JW Jr (2003b) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33(5-6):451–461PubMedCrossRefGoogle Scholar
  130. Van Assche T, Fransen P, Guns PJ, Herman AG, Bult H (2007) Altered Ca2+ handling of smooth muscle cells in aorta of apolipoprotein E-deficient mice before development of atherosclerotic lesions. Cell Calcium 41(3):295–302PubMedCrossRefGoogle Scholar
  131. Varga-Szabo D, Authi KS, Braun A, Bender M, Ambily A, Hassock SR, Gudermann T, Dietrich A, Nieswandt B (2008a) Store-operated Ca(2+) entry in platelets occurs independently of transient receptor potential (TRP) C1. Pflugers Arch 457(2):377–387PubMedCrossRefGoogle Scholar
  132. Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, Renne T, Stoll G, Nieswandt B (2008b) The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 205(7):1583–1591PubMedPubMedCentralCrossRefGoogle Scholar
  133. Varga-Szabo D, Braun A, Nieswandt B (2009) Calcium signaling in platelets. J Thromb Haemost 7(7):1057–1066PubMedCrossRefGoogle Scholar
  134. Venkiteswaran G, Hasan G (2009) Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight. Proc Natl Acad Sci U S A 106(25):10326–10331PubMedPubMedCentralCrossRefGoogle Scholar
  135. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223PubMedCrossRefGoogle Scholar
  136. Wang LY, Zhang JH, Yu J, Yang J, Deng MY, Kang HL, Huang L (2015) Reduction of store-operated Ca(2+) entry correlates with endothelial progenitor cell dysfunction in atherosclerotic mice. Stem Cells Dev 24(13):1582–1590PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wehrens XH, Marks AR (2004) Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nat Rev Drug Discov 3(7):565–573PubMedCrossRefGoogle Scholar
  138. Wellman GC, Cartin L, Eckman DM, Stevenson AS, Saundry CM, Lederer WJ, Nelson MT (2001) Membrane depolarization, elevated Ca(2+) entry, and gene expression in cerebral arteries of hypertensive rats. Am J Physiol Heart Circ Physiol 281(6):H2559–H2567PubMedGoogle Scholar
  139. Welt FG, Edelman ER, Simon DI, Rogers C (2000) Neutrophil, not macrophage, infiltration precedes neointimal thickening in balloon-injured arteries. Arterioscler Thromb Vasc Biol 20(12):2553–2558PubMedCrossRefGoogle Scholar
  140. Xia W, Li Y, Wang B, Chen J, Wang X, Sun Q, Sun F, Li Z, Zhao Z (2015) Enhanced store-operated calcium entry in platelets is associated with peripheral artery disease in type 2 diabetes. Cell Physiol Biochem 37(5):1945–1955PubMedCrossRefGoogle Scholar
  141. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443(7108):226–229PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yu H, Sliedregt-Bol K, Overkleeft H, van der Marel GA, van Berkel TJ, Biessen EA (2006) Therapeutic potential of a synthetic peptide inhibitor of nuclear factor of activated T cells as antirestenotic agent. Arterioscler Thromb Vasc Biol 26(7):1531–1537PubMedCrossRefGoogle Scholar
  143. Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11(3):337–343PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zhang W, Trebak M (2011) STIM1 and Orai1: novel targets for vascular diseases? Sci China Life Sci 54(8):780–785PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103(24):9357–9362PubMedPubMedCentralCrossRefGoogle Scholar
  146. Zhang W, Halligan KE, Zhang X, Bisaillon JM, Gonzalez-Cobos JC, Motiani RK, Hu G, Vincent PA, Zhou J, Barroso M, Singer HA, Matrougui K, Trebak M (2011) Orai1-mediated I (CRAC) is essential for neointima formation after vascular injury. Circ Res 109(5):534–542PubMedPubMedCentralCrossRefGoogle Scholar
  147. Zhang X, Gonzalez-Cobos JC, Schindl R, Muik M, Ruhle B, Motiani RK, Bisaillon JM, Zhang W, Fahrner M, Barroso M, Matrougui K, Romanin C, Trebak M (2013) Mechanisms of STIM1 activation of store-independent leukotriene C4-regulated Ca2+ channels. Mol Cell Biol 33(18):3715–3723PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zhang X, Zhang W, Gonzalez-Cobos JC, Jardin I, Romanin C, Matrougui K, Trebak M (2014) Complex role of STIM1 in the activation of store-independent Orai1/3 channels. J Gen Physiol 143(3):345–359PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhang W, Zhang X, Gonzalez-Cobos JC, Stolwijk JA, Matrougui K, Trebak M (2015) Leukotriene-C4 synthase, a critical enzyme in the activation of store-independent Orai1/Orai3 channels, is required for neointimal hyperplasia. J Biol Chem 290(8):5015–5027PubMedCrossRefGoogle Scholar
  150. Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17(1):112–116PubMedCrossRefGoogle Scholar
  151. Zou M, Dong H, Meng X, Cai C, Li C, Cai S, Xue Y (2015) Store-operated Ca2+ entry plays a role in HMGB1-induced vascular endothelial cell hyperpermeability. PLoS One 10(4):e0123432PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Systems Biology GroupCSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
  2. 2.Department of Cellular and Molecular PhysiologyThe Pennsylvania State University College of MedicineHersheyUSA

Personalised recommendations