Advertisement

Introduction: Overview of the Pathophysiological Implications of Store-Operated Calcium Entry in Mammalian Cells

  • Juan A. RosadoEmail author
Chapter
  • 1.7k Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 993)

Abstract

Since store-operated Ca2+ entry (SOCE) was proposed by Putney three decades ago (Putney. Cell Calcium 7:1–12, 1986), its functional role and involvement in the pathophysiology of a number of disorders has been investigated. The role of SOCE in cell physiology has been discussed in the previous chapters, and the following part is devoted to the current knowledge concerning the mechanisms underlying the development of certain diseases that involve SOCE abnormalities.

Keywords

Orai1 STIM1 SOCE SCID Stormorken syndrome York platelet syndrome 

References

  1. Balghi H, Robert R, Rappaz B, Zhang X, Wohlhuter-Haddad A, Evagelidis A, Luo Y, Goepp J, Ferraro P, Romeo P, Trebak M, Wiseman PW, Thomas DY, Hanrahan JW (2011) Enhanced Ca2+ entry due to Orai1 plasma membrane insertion increases IL-8 secretion by cystic fibrosis airways. FASEB J 25:4274–4291CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bird GS, Putney JW Jr (2005) Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. J Physiol 562:697–706CrossRefPubMedGoogle Scholar
  3. Bohm J, Chevessier F, Maues De Paula A, Koch C, Attarian S, Feger C, Hantai D, Laforet P, Ghorab K, Vallat JM, Fardeau M, Figarella-Branger D, Pouget J, Romero NB, Koch M, Ebel C, Levy N, Krahn M, Eymard B, Bartoli M, Laporte J (2013) Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 92:271–278CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dominguez-Rodriguez A, Diaz I, Rodriguez-Moyano M, Calderon-Sanchez E, Rosado JA, Ordonez A, Smani T (2012) Urotensin-II signaling mechanism in rat coronary artery: role of STIM1 and Orai1-dependent store operated calcium influx in vasoconstriction. Arterioscler Thromb Vasc Biol 32:1325–1332CrossRefPubMedGoogle Scholar
  5. Dubois C, Vanden Abeele F, Lehen’kyi V, Gkika D, Guarmit B, Lepage G, Slomianny C, Borowiec AS, Bidaux G, Benahmed M, Shuba Y, Prevarskaya N (2014) Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 26:19–32CrossRefPubMedGoogle Scholar
  6. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185CrossRefPubMedGoogle Scholar
  7. Galan C, Zbidi H, Bartegi A, Salido GM, Rosado JA (2009) STIM1, Orai1 and hTRPC1 are important for thrombin- and ADP-induced aggregation in human platelets. Arch Biochem Biophys 490:137–144CrossRefPubMedGoogle Scholar
  8. Gilio K, van Kruchten R, Braun A, Berna-Erro A, Feijge MA, Stegner D, van der Meijden PE, Kuijpers MJ, Varga-Szabo D, Heemskerk JW, Nieswandt B (2010) Roles of platelet STIM1 and Orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation. J Biol Chem 285:23629–23638CrossRefPubMedPubMedCentralGoogle Scholar
  9. Jardin I, Rosado JA (2016) STIM and calcium channel complexes in cancer. Biochim Biophys Acta 1863(6 Pt B):1418–1426CrossRefPubMedGoogle Scholar
  10. Lacruz RS, Feske S (2015) Diseases caused by mutations in ORAI1 and STIM1. Ann N Y Acad Sci 1356:45–79CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ma HT, Peng Z, Hiragun T, Iwaki S, Gilfillan AM, Beaven MA (2008) Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. J Immunol 180:2233–2239CrossRefPubMedPubMedCentralGoogle Scholar
  12. Markello T, Chen D, Kwan JY, Horkayne-Szakaly I, Morrison A, Simakova O, Maric I, Lozier J, Cullinane AR, Kilo T, Meister L, Pakzad K, Bone W, Chainani S, Lee E, Links A, Boerkoel C, Fischer R, Toro C, White JG, Gahl WA, Gunay-Aygun M (2015) York platelet syndrome is a CRAC channelopathy due to gain-of-function mutations in STIM1. Mol Genet Metab 114:474–482CrossRefPubMedGoogle Scholar
  13. McCarl CA, Picard C, Khalil S, Kawasaki T, Rother J, Papolos A, Kutok J, Hivroz C, Ledeist F, Plogmann K, Ehl S, Notheis G, Albert MH, Belohradsky BH, Kirschner J, Rao A, Fischer A, Feske S (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124:1311–1318CrossRefPubMedPubMedCentralGoogle Scholar
  14. Misceo D, Holmgren A, Louch WE, Holme PA, Mizobuchi M, Morales RJ, De Paula AM, Stray-Pedersen A, Lyle R, Dalhus B, Christensen G, Stormorken H, Tjonnfjord GE, Frengen E (2014) A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 35:556–564CrossRefPubMedGoogle Scholar
  15. Morin G, Bruechle NO, Singh AR, Knopp C, Jedraszak G, Elbracht M, Bremond-Gignac D, Hartmann K, Sevestre H, Deutz P, Herent D, Nurnberg P, Romeo B, Konrad K, Mathieu-Dramard M, Oldenburg J, Bourges-Petit E, Shen Y, Zerres K, Ouadid-Ahidouch H, Rochette J (2014) Gain-of-function mutation in STIM1 (p.R304W) is associated with Stormorken syndrome. Hum Mutat 35:1221–1232CrossRefPubMedGoogle Scholar
  16. Nesin V, Wiley G, Kousi M, Ong EC, Lehmann T, Nicholl DJ, Suri M, Shahrizaila N, Katsanis N, Gaffney PM, Wierenga KJ, Tsiokas L (2014) Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci USA 111:4197–4202CrossRefPubMedPubMedCentralGoogle Scholar
  17. Pani B, Liu X, Bollimuntha S, Cheng KT, Niesman IR, Zheng C, Achen VR, Patel HH, Ambudkar IS, Singh BB (2013) Impairment of TRPC1-STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1. J Cell Sci 126:667–675CrossRefPubMedPubMedCentralGoogle Scholar
  18. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12CrossRefPubMedGoogle Scholar
  19. Rodriguez-Moyano M, Diaz I, Dionisio N, Zhang X, Avila-Medina J, Calderon-Sanchez E, Trebak M, Rosado JA, Ordonez A, Smani T (2013) Urotensin-II promotes vascular smooth muscle cell proliferation through store operated calcium entry and EGFR transactivation. Cardiovasc Res 100:297–306CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sabourin J, Le Gal L, Saurwein L, Haefliger JA, Raddatz E, Allagnat F (2015) Store-operated Ca2+ entry mediated by Orai1 and TRPC1 participates to insulin secretion in rat beta-cells. J Biol Chem 290:30530–30539CrossRefPubMedPubMedCentralGoogle Scholar
  21. Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA (2015) Functional and physiopathological implications of TRP channels. Biochim Biophys Acta 1853:1772–1782CrossRefPubMedGoogle Scholar
  22. Thiel M, Lis A, Penner R (2013) STIM2 drives Ca2+ oscillations through store-operated Ca2+ entry caused by mild store depletion. J Physiol 591:1433–1445CrossRefPubMedPubMedCentralGoogle Scholar
  23. Wedel B, Boyles RR, Putney JW Jr, Bird GS (2007) Role of the store-operated calcium entry proteins Stim1 and Orai1 in muscarinic cholinergic receptor-stimulated calcium oscillations in human embryonic kidney cells. J Physiol 579:679–689CrossRefPubMedPubMedCentralGoogle Scholar
  24. Wei-Lapierre L, Carrell EM, Boncompagni S, Protasi F, Dirksen RT (2013) Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat Commun 4:2805CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Cell Physiology Research Group, Department of PhysiologyUniversity of ExtremaduraCáceresSpain

Personalised recommendations