Advertisement

Tissue Specificity: SOCE: Implications for Ca2+ Handling in Endothelial Cells

  • Lothar A. BlatterEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 993)

Abstract

Many cellular functions of the vascular endothelium are regulated by fine-tuned global and local, microdomain-confined changes of cytosolic free Ca2+ ([Ca2+]i). Vasoactive agonist-induced stimulation of vascular endothelial cells (VECs) typically induces Ca2+ release through IP3 receptor Ca2+ release channels embedded in the membrane of the endoplasmic reticulum (ER) Ca2+ store, followed by Ca2+ entry from the extracellular space elicited by Ca2+ store depletion and referred to as capacitative or store-operated Ca2+ entry (SOCE). In vascular endothelial cells, SOCE is graded with the degree of store depletion and controlled locally in the subcellular microdomain where depletion occurs. SOCE provides distinct Ca2+ signals that selectively control specific endothelial functions: in calf pulmonary artery endothelial cells, the SOCE Ca2+ signal drives nitric oxide (an endothelium-derived relaxing factor of the vascular smooth muscle) production and controls activation and nuclear translocation of the transcription factor NFAT. Both cellular events are not affected by Ca2+ signals of comparable magnitude arising directly from Ca2+ release from intracellular stores, clearly indicating that SOCE regulates specific Ca2+-dependent cellular tasks by a unique and exclusive mechanism. This review discusses the mechanisms of intracellular Ca2+ regulation in vascular endothelial cells and the role of store-operated Ca2+ entry for endothelium-dependent smooth muscle relaxation and nitric oxide signaling, endothelial oxidative stress response, and excitation-transcription coupling in the vascular endothelium.

Keywords

Cytosolic calcium signaling Excitation-transcription coupling IP3 receptor-induced Ca2+ release Nitric oxide Oxidative stress SOCE Vascular endothelium 

References

  1. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103(11):1289–1299PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42(2):213–223PubMedCrossRefGoogle Scholar
  3. Amcheslavsky A, Wood ML, Yeromin AV, Parker I, Freites JA, Tobias DJ, Cahalan MD (2015) Molecular biophysics of Orai store-operated Ca2+ channels. Biophys J 108(2):237–246PubMedPubMedCentralCrossRefGoogle Scholar
  4. Antigny F, Jousset H, Konig S, Frieden M (2011) Thapsigargin activates Ca(2)+ entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium 49(2):115–127PubMedCrossRefGoogle Scholar
  5. Aromolaran AA, Blatter LA (2005) Modulation of intracellular Ca2+ release and capacitative Ca2+ entry by CaMKII inhibitors in bovine vascular endothelial cells. Am J Physiol Cell Physiol 289(6):C1426–C1436PubMedCrossRefGoogle Scholar
  6. Aromolaran AS, Zima AV, Blatter LA (2007) Role of glycolytically generated ATP for CaMKII-mediated regulation of intracellular Ca2+ signaling in bovine vascular endothelial cells. Am J Physiol Cell Physiol 293(1):C106–C118PubMedCrossRefGoogle Scholar
  7. Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42(2):543–549PubMedCrossRefGoogle Scholar
  8. Berna-Erro A, Woodard GE, Rosado JA (2012) Orais and STIMs: physiological mechanisms and disease. J Cell Mol Med 16(3):407–424PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berridge MJ (1995) Capacitative calcium entry. Biochem J 312(Pt 1):1–11PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blatter LA, Taha Z, Mesaros S, Shacklock PS, Wier WG, Malinski T (1995) Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. Circ Res 76(5):922–924PubMedCrossRefGoogle Scholar
  11. Bogeski I, Kilch T, Niemeyer BA (2012) ROS and SOCE: recent advances and controversies in the regulation of STIM and Orai. J Physiol 590(17):4193–4200PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bolotina VM, Csutora P (2005) CIF and other mysteries of the store-operated Ca2+-entry pathway. Trends Biochem Sci 30(7):378–387PubMedCrossRefGoogle Scholar
  13. Boss V, Wang X, Koppelman LF, Xu K, Murphy TJ (1998) Histamine induces nuclear factor of activated T cell-mediated transcription and cyclosporin A-sensitive interleukin-8 mRNA expression in human umbilical vein endothelial cells. Mol Pharmacol 54(2):264–272PubMedGoogle Scholar
  14. Cannell MB, Sage SO (1989) Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells. J Physiol 419:555–568PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carrier GO, Fuchs LC, Winecoff AP, Giulumian AD, White RE (1997) Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca2+-activated K channels. Am J Physiol 273(1 Pt 2):H76–H84PubMedGoogle Scholar
  16. Chen J, Wang Y, Nakajima T, Iwasawa K, Hikiji H, Sunamoto M, Choi DK, Yoshida Y, Sakaki Y, Toyo-Oka T (2000) Autocrine action and its underlying mechanism of nitric oxide on intracellular Ca2+ homeostasis in vascular endothelial cells. J Biol Chem 275(37):28739–28749PubMedCrossRefGoogle Scholar
  17. Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ, Shen MR (2011) Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci USA 108(37):15225–15230PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen YF, Hsu KF, Shen MR (2016) The store-operated Ca(2+) entry-mediated signaling is important for cancer spread. Biochim Biophys Acta 1863(6 Pt B):1427–1435PubMedCrossRefGoogle Scholar
  19. Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179PubMedCrossRefGoogle Scholar
  20. Cioffi DL (2010) Redox regulation of endothelial canonical transient receptor potential channels. Antioxid Redox Signal 15(6):1567–1582CrossRefGoogle Scholar
  21. Clapham DE (1995) Calcium signaling. Cell 80(2):259–268PubMedCrossRefGoogle Scholar
  22. Courjaret R, Machaca K (2012) STIM and Orai in cellular proliferation and division. Front Biosci (Elite Ed) 4:331–341CrossRefGoogle Scholar
  23. Dedkova EN, Blatter LA (2002) Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 539(Pt 1):77–91PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dedkova EN, Blatter LA (2005) Modulation of mitochondrial Ca2+ by nitric oxide in cultured bovine vascular endothelial cells. Am J Physiol Cell Physiol 289(4):C836–C845PubMedCrossRefGoogle Scholar
  25. Dedkova EN, Ji X, Lipsius SL, Blatter LA (2004) Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol Cell Physiol 286(2):C406–C415PubMedCrossRefGoogle Scholar
  26. Dietrich A, Kalwa H, Gudermann T (2010) TRPC channels in vascular cell function. Thromb Haemost 103(2):262–270PubMedCrossRefGoogle Scholar
  27. Doan TN, Gentry DL, Taylor AA, Elliott SJ (1994) Hydrogen peroxide activates agonist-sensitive Ca(2+)-flux pathways in canine venous endothelial cells. Biochem J 297(Pt 1):209–215PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dolor RJ, Hurwitz LM, Mirza Z, Strauss HC, Whorton AR (1992) Regulation of extracellular calcium entry in endothelial cells: role of intracellular calcium pool. Am J Physiol 262(1 Pt 1):C171–C181PubMedGoogle Scholar
  29. Donnadieu E, Bourguignon LY (1996) Ca2+ signaling in endothelial cells stimulated by bradykinin: Ca2+ measurement in the mitochondria and the cytosol by confocal microscopy. Cell Calcium 20(1):53–61PubMedCrossRefGoogle Scholar
  30. Dragoni S, Guerra G, Fiorio Pla A, Bertoni G, Rappa A, Poletto V, Bottino C, Aronica A, Lodola F, Cinelli MP, Laforenza U, Rosti V, Tanzi F, Munaron L, Moccia F (2015) A functional transient receptor potential vanilloid 4 (TRPV4) channel is expressed in human endothelial progenitor cells. J Cell Physiol 230(1):95–104PubMedCrossRefGoogle Scholar
  31. Dreher D, Junod AF (1995) Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells. J Cell Physiol 162(1):147–153PubMedCrossRefGoogle Scholar
  32. Elliott SJ, Doan TN (1993) Oxidant stress inhibits the store-dependent Ca(2+)-influx pathway of vascular endothelial cells. Biochem J 292(Pt 2):385–393PubMedPubMedCentralCrossRefGoogle Scholar
  33. Elliott SJ, Eskin SG, Schilling WP (1989) Effect of t-butyl-hydroperoxide on bradykinin-stimulated changes in cytosolic calcium in vascular endothelial cells. J Biol Chem 264(7):3806–3810PubMedGoogle Scholar
  34. Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JX (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285(6):L1233–L1245PubMedCrossRefGoogle Scholar
  35. Fasolato C, Nilius B (1998) Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Arch 436(1):69–74PubMedCrossRefGoogle Scholar
  36. Feske S (2010) CRAC channelopathies. Pflugers Arch 460(2):417–435PubMedPubMedCentralCrossRefGoogle Scholar
  37. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185PubMedCrossRefGoogle Scholar
  38. Feske S, Picard C, Fischer A (2010) Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol 135(2):169–182PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fiorio Pla A, Gkika D (2013) Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol 4:311PubMedPubMedCentralCrossRefGoogle Scholar
  40. Florea SM, Blatter LA (2008) The effect of oxidative stress on Ca(2+) release and capacitative Ca(2+) entry in vascular endothelial cells. Cell Calcium 43(4):405–415PubMedCrossRefGoogle Scholar
  41. Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23(6 Pt 2):1121–1131PubMedCrossRefGoogle Scholar
  42. Gericke M, Droogmans G, Nilius B (1993) Thapsigargin discharges intracellular calcium stores and induces transmembrane currents in human endothelial cells. Pflugers Arch 422(6):552–557PubMedCrossRefGoogle Scholar
  43. Girardin NC, Antigny F, Frieden M (2010) Electrophysiological characterization of store-operated and agonist-induced Ca2+ entry pathways in endothelial cells. Pflugers Arch 460(1):109–120PubMedCrossRefGoogle Scholar
  44. Graier WF, Hoebel BG, Paltauf-Doburzynska J, Kostner GM (1998) Effects of superoxide anions on endothelial Ca2+ signaling pathways. Arterioscler Thromb Vasc Biol 18(9):1470–1479PubMedCrossRefGoogle Scholar
  45. Groschner K, Hingel S, Lintschinger B, Balzer M, Romanin C, Zhu X, Schreibmayer W (1998) Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett 437(1-2):101–106PubMedCrossRefGoogle Scholar
  46. Gwack Y, Feske S, Srikanth S, Hogan PG, Rao A (2007) Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 42(2):145–156PubMedCrossRefGoogle Scholar
  47. Hadri L, Pavoine C, Lipskaia L, Yacoubi S, Lompre AM (2006) Transcription of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 3 gene, ATP2A3, is regulated by the calcineurin/NFAT pathway in endothelial cells. Biochem J 394(Pt 1):27–33PubMedPubMedCentralCrossRefGoogle Scholar
  48. Harrison DG (2005) The shear stress of keeping arteries clear. Nat Med 11(4):375–376PubMedCrossRefGoogle Scholar
  49. Himmel HM, Whorton AR, Strauss HC (1993) Intracellular calcium, currents, and stimulus-response coupling in endothelial cells. Hypertension 21(1):112–127PubMedCrossRefGoogle Scholar
  50. Hofer E, Schweighofer B (2007) Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb Haemost 97(3):355–363PubMedPubMedCentralGoogle Scholar
  51. Hogan PG, Rao A (2015) Store-operated calcium entry: mechanisms and modulation. Biochem Biophys Res Commun 460(1):40–49PubMedPubMedCentralCrossRefGoogle Scholar
  52. Holda JR, Blatter LA (1997) Capacitative calcium entry is inhibited in vascular endothelial cells by disruption of cytoskeletal microfilaments. FEBS Lett 403(2):191–196PubMedCrossRefGoogle Scholar
  53. Holda JR, Klishin A, Sedova M, Huser J, Blatter LA (1998) Capacitative calcium entry. News Physiol Sci 13:157–163PubMedGoogle Scholar
  54. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356PubMedCrossRefGoogle Scholar
  55. Hu Q, Ziegelstein RC (2000) Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation 102(20):2541–2547PubMedCrossRefGoogle Scholar
  56. Huser J, Blatter LA (1997) Elementary events of agonist-induced Ca2+ release in vascular endothelial cells. Am J Physiol 273(5 Pt 1):C1775–C1782PubMedGoogle Scholar
  57. Huser J, Holda JR, Kockskamper J, Blatter LA (1999) Focal agonist stimulation results in spatially restricted Ca2+ release and capacitative Ca2+ entry in bovine vascular endothelial cells. J Physiol 514(Pt 1):101–109PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84(24):9265–9269PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jairaman A, Prakriya M (2013) Molecular pharmacology of store-operated CRAC channels. Channels (Austin) 7(5):402–414CrossRefGoogle Scholar
  60. Jara E, Hidalgo MA, Hancke JL, Hidalgo AI, Brauchi S, Nunez L, Villalobos C, Burgos RA (2014) Delphinidin activates NFAT and induces IL-2 production through SOCE in T cells. Cell Biochem Biophys 68(3):497–509PubMedCrossRefGoogle Scholar
  61. Jardin I, Rosado JA (2016) STIM and calcium channel complexes in cancer. Biochim Biophys Acta 1863(6 Pt B):1418–1426PubMedCrossRefGoogle Scholar
  62. Jousset H, Malli R, Girardin N, Graier WF, Demaurex N, Frieden M (2008) Evidence for a receptor-activated Ca2+ entry pathway independent from Ca2+ store depletion in endothelial cells. Cell Calcium 43(1):83–94Google Scholar
  63. Kar P, Samanta K, Kramer H, Morris O, Bakowski D, Parekh AB (2014) Dynamic assembly of a membrane signaling complex enables selective activation of NFAT by Orai1. Curr Biol 24(12):1361–1368PubMedPubMedCentralCrossRefGoogle Scholar
  64. Klishin A, Sedova M, Blatter LA (1998) Time-dependent modulation of capacitative Ca2+ entry signals by plasma membrane Ca2+ pump in endothelium. Am J Physiol 274(4 Pt 1):C1117–C1128PubMedGoogle Scholar
  65. Kozai D, Ogawa N, Mori Y (2014) Redox regulation of transient receptor potential channels. Antioxid Redox Signal 21(6):971–986PubMedCrossRefGoogle Scholar
  66. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88(11):4651–4655PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lacruz RS, Feske S (2015) Diseases caused by mutations in ORAI1 and STIM1. Ann N Y Acad Sci 1356:45–79PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lawrie AM, Rizzuto R, Pozzan T, Simpson AW (1996) A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem 271(18):10753–10759PubMedCrossRefGoogle Scholar
  69. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lodola F, Laforenza U, Bonetti E, Lim D, Dragoni S, Bottino C, Ong HL, Guerra G, Ganini C, Massa M, Manzoni M, Ambudkar IS, Genazzani AA, Rosti V, Pedrazzoli P, Tanzi F, Moccia F, Porta C (2012) Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients. PLoS One 7(9):e42541Google Scholar
  71. Lopez JJ, Albarran L, Gomez LJ, Smani T, Salido GM, Rosado JA (2016) Molecular modulators of store-operated calcium entry. Biochim Biophys Acta 1863(8):2037–2043PubMedCrossRefGoogle Scholar
  72. Lounsbury KM, Hu Q, Ziegelstein RC (2000) Calcium signaling and oxidant stress in the vasculature. Free Radic Biol Med 28(9):1362–1369PubMedCrossRefGoogle Scholar
  73. Ma X, Cheng KT, Wong CO, O’Neil RG, Birnbaumer L, Ambudkar IS, Yao X (2011) Heteromeric TRPV4-C1 channels contribute to store-operated Ca(2+) entry in vascular endothelial cells. Cell Calcium 50(6):502–509PubMedCrossRefGoogle Scholar
  74. Madge L, Marshall IC, Taylor CW (1997) Delayed autoregulation of the Ca2+ signals resulting from capacitative Ca2+ entry in bovine pulmonary artery endothelial cells. J Physiol 498(Pt 2):351–369PubMedPubMedCentralCrossRefGoogle Scholar
  75. Malli R, Frieden M, Osibow K, Graier WF (2003a) Mitochondria efficiently buffer subplasmalemmal Ca2+ elevation during agonist stimulation. J Biol Chem 278(12):10807–10815PubMedCrossRefGoogle Scholar
  76. Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003b) Sustained Ca2+ transfer across mitochondria is Essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278(45):44769–44779PubMedCrossRefGoogle Scholar
  77. Malli R, Frieden M, Hunkova M, Trenker M, Graier WF (2007) Ca2+ refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+ entry in endothelial cells. Cell Calcium 41(1):63–76PubMedCrossRefGoogle Scholar
  78. Michiels C, Arnould T, Houbion A, Remacle J (1992) Human umbilical vein endothelial cells submitted to hypoxia-reoxygenation in vitro: implication of free radicals, xanthine oxidase, and energy deficiency. J Cell Physiol 153(1):53–61PubMedCrossRefGoogle Scholar
  79. Miller BA, Zhang W (2011) TRP channels as mediators of oxidative stress. Adv Exp Med Biol 704:531–544PubMedCrossRefGoogle Scholar
  80. Minami T, Aird WC (2005) Endothelial cell gene regulation. Trends Cardiovasc Med 15(5):174–184PubMedCrossRefGoogle Scholar
  81. Moccia F, Guerra G (2016) Ca(2+) signalling in endothelial progenitor cells: friend or foe? J Cell Physiol 231(2):314–327PubMedCrossRefGoogle Scholar
  82. Moccia F, Poletto V (2015) May the remodeling of the Ca(2)(+) toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment? Biochim Biophys Acta 1853(9):1958–1973PubMedCrossRefGoogle Scholar
  83. Moccia F, Tanzi F, Munaron L (2014) Endothelial remodelling and intracellular calcium machinery. Curr Mol Med 14(4):457–480PubMedCrossRefGoogle Scholar
  84. Mumtaz S, Burdyga G, Borisova L, Wray S, Burdyga T (2010) The mechanism of agonist induced Ca(2+) signalling in intact endothelial cells studied confocally in in situ arteries. Cell Calcium 49(1):66–77PubMedCrossRefGoogle Scholar
  85. Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R (2010) Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 123(Pt 15):2553–2564PubMedCrossRefGoogle Scholar
  86. Nakatsubo N, Kojima H, Kikuchi K, Nagoshi H, Hirata Y, Maeda D, Imai Y, Irimura T, Nagano T (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett 427(2):263–266PubMedCrossRefGoogle Scholar
  87. Nunes P, Demaurex N (2014) Redox regulation of store-operated Ca2+ entry. Antioxid Redox Signal 21(6):915–932PubMedPubMedCentralCrossRefGoogle Scholar
  88. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526PubMedCrossRefGoogle Scholar
  89. Paltauf-Doburzynska J, Frieden M, Graier WF (1999) Mechanisms of Ca2+ store depletion in single endothelial cells in a Ca(2+)-free environment. Cell Calcium 25(5):345–353PubMedCrossRefGoogle Scholar
  90. Parekh AB (2008) Mitochondrial regulation of store-operated CRAC channels. Cell Calcium 44(1):6–13PubMedCrossRefGoogle Scholar
  91. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77(4):901–930PubMedGoogle Scholar
  92. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810PubMedCrossRefGoogle Scholar
  93. Parker I, Yao Y (1996) Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J Physiol 491(Pt 3):663–668PubMedPubMedCentralCrossRefGoogle Scholar
  94. Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281(19):13588–13595PubMedCrossRefGoogle Scholar
  95. Prakriya M (2013) Store-operated Orai channels structure and function. Curr Top Membr 71:1–32PubMedPubMedCentralCrossRefGoogle Scholar
  96. Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95(4):1383–1436PubMedPubMedCentralCrossRefGoogle Scholar
  97. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233PubMedCrossRefGoogle Scholar
  98. Prevarskaya N, Skryma R, Shuba Y (2011) Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer 11(8):609–618PubMedCrossRefGoogle Scholar
  99. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12PubMedCrossRefGoogle Scholar
  100. Putney JW Jr (1997) Capacitative calcium entry. R. G. Landes, Georgetown, TXCrossRefGoogle Scholar
  101. Putney JW Jr (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231(1):10–22PubMedCrossRefGoogle Scholar
  102. Putney JW Jr (2013) Alternative forms of the store-operated calcium entry mediators, STIM1 and Orai1. Curr Top Membr 71:109–123PubMedCrossRefGoogle Scholar
  103. Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92(3):639–646PubMedPubMedCentralCrossRefGoogle Scholar
  104. Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364(6440):809–814PubMedCrossRefGoogle Scholar
  105. Redondo PC, Rosado JA (2015) Store-operated calcium entry: unveiling the calcium handling signalplex. Int Rev Cell Mol Biol 316:183–226PubMedCrossRefGoogle Scholar
  106. Ribeiro CM, Reece J, Putney JW Jr (1997) Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. J Biol Chem 272(42):26555–26561PubMedCrossRefGoogle Scholar
  107. Rinne A, Blatter LA (2010) A fluorescence-based assay to monitor transcriptional activity of NFAT in living cells. J Physiol 588(Pt 17):3211–3216PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rinne A, Banach K, Blatter LA (2009) Regulation of nuclear factor of activated T cells (NFAT) in vascular endothelial cells. J Mol Cell Cardiol 47(3):400–410PubMedPubMedCentralCrossRefGoogle Scholar
  109. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sanchez-Hernandez Y, Laforenza U, Bonetti E, Fontana J, Dragoni S, Russo M, Avelino-Cruz JE, Schinelli S, Testa D, Guerra G, Rosti V, Tanzi F, Moccia F (2010) Store-operated Ca(2+) entry is expressed in human endothelial progenitor cells. Stem Cells Dev 19(12):1967–1981PubMedCrossRefGoogle Scholar
  111. Schilling WP, Elliott SJ (1992) Ca2+ signaling mechanisms of vascular endothelial cells and their role in oxidant-induced endothelial cell dysfunction. Am J Physiol 262(6 Pt 2):H1617–H1630PubMedGoogle Scholar
  112. Schilling WP, Cabello OA, Rajan L (1992) Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist-sensitive Ca(2+)-influx pathway. Biochem J 284(Pt 2):521–530PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sedova M, Blatter LA (1999) Dynamic regulation of [Ca2+]i by plasma membrane Ca(2+)-ATPase and Na+/Ca2+ exchange during capacitative Ca2+ entry in bovine vascular endothelial cells. Cell Calcium 25(5):333–343PubMedCrossRefGoogle Scholar
  114. Sedova M, Blatter LA (2000) Intracellular sodium modulates mitochondrial calcium signaling in vascular endothelial cells. J Biol Chem 275(45):35402–35407PubMedCrossRefGoogle Scholar
  115. Sedova M, Klishin A, Huser J, Blatter LA (2000) Capacitative Ca2+ entry is graded with degree of intracellular Ca2+ store depletion in bovine vascular endothelial cells. J Physiol 523(Pt 3):549–559PubMedPubMedCentralCrossRefGoogle Scholar
  116. Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14(10):2337–2349PubMedPubMedCentralCrossRefGoogle Scholar
  117. Takeuchi K, Watanabe H, Tran QK, Ozeki M, Sumi D, Hayashi T, Iguchi A, Ignarro LJ, Ohashi K, Hayashi H (2004) Nitric oxide: inhibitory effects on endothelial cell calcium signaling, prostaglandin I2 production and nitric oxide synthase expression. Cardiovasc Res 62(1):194–201PubMedCrossRefGoogle Scholar
  118. Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB (2002) Role of Ca2+ signaling in the regulation of endothelial permeability. Vasc Pharmacol 39(4–5):173–185CrossRefGoogle Scholar
  119. Vaca L, Kunze DL (1994) Depletion of intracellular Ca2+ stores activates a Ca(2+)-selective channel in vascular endothelium. Am J Physiol 267(4 Pt 1):C920–C925PubMedGoogle Scholar
  120. Varnai P, Hunyady L, Balla T (2009) STIM and Orai: the long-awaited constituents of store-operated calcium entry. Trends Pharmacol Sci 30(3):118–128PubMedPubMedCentralCrossRefGoogle Scholar
  121. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223PubMedCrossRefGoogle Scholar
  122. Wang LY, Zhang JH, Yu J, Yang J, Deng MY, Kang HL, Huang L (2015) Reduction of store-operated Ca(2+) entry correlates with endothelial progenitor cell dysfunction in atherosclerotic mice. Stem Cells Dev 24(13):1582–1590PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ward PA (1991) Mechanisms of endothelial cell injury. J Lab Clin Med 118(5):421–426PubMedGoogle Scholar
  124. Xie J, Pan H, Yao J, Zhou Y, Han W (2016) SOCE and cancer: recent progress and new perspectives. Int J Cancer 138(9):2067–2077PubMedCrossRefGoogle Scholar
  125. Yao X, Huang Y (2003) From nitric oxide to endothelial cytosolic Ca2+: a negative feedback control. Trends Pharmacol Sci 24(6):263–266PubMedCrossRefGoogle Scholar
  126. Yao Y, Choi J, Parker I (1995) Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol 482(Pt 3):533–553PubMedPubMedCentralCrossRefGoogle Scholar
  127. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2(11):596–607PubMedCrossRefGoogle Scholar
  128. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103(24):9357–9362PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zuccolo E, Bottino C, Diofano F, Poletto V, Codazzi AC, Mannarino S, Campanelli R, Fois G, Marseglia GL, Guerra G, Montagna D, Laforenza U, Rosti V, Massa M, Moccia F (2016) Constitutive store-operated Ca(2+) entry leads to enhanced nitric oxide production and proliferation in infantile hemangioma-derived endothelial colony-forming cells. Stem Cells Dev 25(4):301–319PubMedCrossRefGoogle Scholar
  130. Zulueta JJ, Sawhney R, Yu FS, Cote CC, Hassoun PM (1997) Intracellular generation of reactive oxygen species in endothelial cells exposed to anoxia-reoxygenation. Am J Physiol 272(5 Pt 1):L897–L902PubMedGoogle Scholar
  131. Zweier JL, Broderick R, Kuppusamy P, Thompson-Gorman S, Lutty GA (1994) Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J Biol Chem 269(39):24156–24162PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Physiology and BiophysicsRush University Medical CenterChicagoUSA

Personalised recommendations