New Aspects of the Contribution of ER to SOCE Regulation: TRPC Proteins as a Link Between Plasma Membrane Ion Transport and Intracellular Ca2+ Stores

  • Alexis Bavencoffe
  • Michael Xi ZhuEmail author
  • Jin-bin Tian
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 993)


Transient receptor potential canonical (TRPC) proteins were identified as molecular candidates of receptor- and/or store-operated channels because of their close homology to the Drosophila TRP and TRPL. Functional studies have revealed that TRPC channels play an integrated part of phospholipase C-transduced cell signaling, mediating the influx of both Ca2+ and Na+ into cells. As a consequence, the TRPC channels have diverse functional roles in different cell types, including metabotropic receptor-evoked membrane depolarization and intracellular Ca2+ concentration elevation. Depending on the cellular environment and the protein partners present in the channel complex, the TRPC channels display different biophysical properties and mechanisms of regulation, including but not limited to the Ca2+ filling state of the endoplasmic reticulum. Despite the overwhelming focus on STIM-regulated Orai channels for store-operated Ca2+ entry, evidence is growing for STIM-operated TRPC channel activities in various cell types, demonstrating both store-dependent and store-independent mechanisms of TRPC channel gating. The existence of physical and functional interactions between plasma membrane-localized TRPC channels and other proteins involved in sensing and regulating the intracellular Ca2+ store contents, such as inositol trisphosphate receptors, Junctate, and Homer, further argues for the role of TRPC proteins in linking plasma membrane ion transport with intracellular Ca2+ stores. The interplay among these proteins will likely define the functional significance of TRPC channel activation in different cellular contexts and under different modes of stimulations.


TRPC STIM Orai SOCE Isoc SOAR domain Trafficking 


  1. Albarran L, Dionisio N, Lopez E, Salido GM, Redondo PC, Rosado JA (2014) STIM1 regulates TRPC6 heteromultimerization and subcellular location. Biochem J 463:373–381PubMedCrossRefGoogle Scholar
  2. Alkhani H, Ase AR, Grant R, O’Donnell D, Groschner K, Séguéla P (2014) Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors. Mol Pain 10:43PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42:213–223PubMedCrossRefGoogle Scholar
  4. Antigny F, Koenig S, Bernheim L, Frieden M (2013) During post-natal human myogenesis, normal myotube size requires TRPC1- and TRPC4-mediated Ca2+ entry. J Cell Sci 126:2525–2533PubMedCrossRefGoogle Scholar
  5. Asanov A, Sampieri A, Moreno C, Pacheco J, Salgado A, Sherry R, Vaca L (2015) Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels. Cell Calcium 57:1–13PubMedCrossRefGoogle Scholar
  6. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325PubMedCrossRefGoogle Scholar
  7. Berridge MJ (1995) Capacitative calcium entry. Biochem J 312:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648PubMedCrossRefGoogle Scholar
  9. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21PubMedCrossRefGoogle Scholar
  10. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529PubMedCrossRefGoogle Scholar
  11. Boulay G, Zhu X, Peyton M, Jian M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680PubMedCrossRefGoogle Scholar
  12. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca2+ entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc Natl Acad Sci U S A 96:14955–14960PubMedPubMedCentralCrossRefGoogle Scholar
  13. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600PubMedPubMedCentralCrossRefGoogle Scholar
  14. Camacho Londoño JE, Tian Q, Hammer K, Schröder L, Camacho Londoño J, Reil JC, He T, Oberhofer M, Mannebach S, Mathar I, Philipp SE, Tabellion W, Schweda F, Dietrich A, Kaestner L, Laufs U, Birnbaumer L, Flockerzi V, Freichel M, Lipp P (2015) A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J 36:2257–2266PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cao Q, Zhong XZ, Zou Y, Murrell-Lagnado R, Zhu MX, Dong XP (2015) Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J Cell Biol 209(6):879–894PubMedPubMedCentralCrossRefGoogle Scholar
  16. Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J Physiol 317:263–279PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cheng KT, Liu X, Ong HL, Ambudkar IS (2008) Functional requirement for Orai1 in store operated TRPC1-STIM1 channels. J Biol Chem 283:12935–12940PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179PubMedCrossRefGoogle Scholar
  19. Cioffi DL, Wu S, Chen H, Alexeyev M, St Croix CM, Pitt BR, Uhlig S, Stevens T (2012) Orai1 determines calcium selectivity of an endogenous TRPC heterotetramer channel. Circ Res 110:1435–1444PubMedPubMedCentralCrossRefGoogle Scholar
  20. Desai PN, Zhang X, Wu S, Janoshazi A, Bolimuntha S, Putney JW, Trebak M (2015) Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Sci Signal 8:ra74PubMedPubMedCentralCrossRefGoogle Scholar
  21. de Souza LB, Ong HL, Liu X, Ambudkar IS (2015) Fast endocytic recycling determines TRPC1-STIM1 clustering in ER-PM junctions and plasma membrane function of the channel. Biochim Biophys Acta 1853:2709–2721PubMedCrossRefGoogle Scholar
  22. Ding Y, Winters A, Ding M, Graham S, Akopova I, Muallem S, Wang Y, Hong JH, Gryczynski Z, Yang SH, Birnbaumer L, Ma R (2011) Reactive oxygen species-mediated TRPC6 protein activation in vascular myocytes, a mechanism for vasoconstrictor-regulated vascular tone. J Biol Chem 286:31799–31809PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI(3,5)P2 controls membrane traffic by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat Commun 1(4):38PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fasolato C, Hoth M, Matthews G, Penner R (1993) Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc Natl Acad Sci U S A 90:3068–3072PubMedPubMedCentralCrossRefGoogle Scholar
  25. Freichel M, Vennekens R, Olausson J, Stolz S, Philipp SE, Weissgerber P, Flockerzi V (2005) Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J Physiol 567:59–66PubMedPubMedCentralCrossRefGoogle Scholar
  26. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6:837–845PubMedCrossRefGoogle Scholar
  27. Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–651PubMedCrossRefGoogle Scholar
  28. Hardie RC, Minke B (1993) Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16:371–376PubMedCrossRefGoogle Scholar
  29. Hardie RC, Raghu P (2001) Visual transduction in Drosophila. Nature 413:186–193PubMedCrossRefGoogle Scholar
  30. Harper MT, Londoño JE, Quick K, Londoño JC, Flockerzi V, Philipp SE, Birnbaumer L, Freichel M, Poole AW (2013) Transient receptor potential channels function as a coincidence signal detector mediating phosphatidylserine exposure. Sci Signal 6:ra50PubMedCrossRefGoogle Scholar
  31. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59:392–398PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356PubMedCrossRefGoogle Scholar
  33. Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hoth M, Fasolato C, Penner R (1993) Ion channels and calcium signaling in mast cells. Ann N Y Acad Sci 707:198–209PubMedCrossRefGoogle Scholar
  35. Hu Y, Vaca L, Zhu X, Birnbaumer L, Kunze DL, Schilling WP (1994) Appearance of a novel Ca2+ influx pathway in Sf9 insect cells following expression of the transient receptor potential-like (trpl) protein of Drosophila. Biochem Biophys Res Commun 201:1050–1056PubMedCrossRefGoogle Scholar
  36. Hurst RS, Zhu X, Boulay G, Birnbaumer L, Stefani E (1998) Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Lett 422:333–338PubMedCrossRefGoogle Scholar
  37. Irvine RF (1990) ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett 263:5–9PubMedCrossRefGoogle Scholar
  38. Jackson TR, Patterson SI, Thastrup O, Hanley MR (1988) A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J 253:81–86PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 283:25296–25304PubMedCrossRefGoogle Scholar
  40. Jeon JP, Hong C, Park EJ, Jeon JH, Cho NH, Kim IG, Choe H, Muallem S, Kim HJ, So I (2012) Selective Gαi subunits as novel direct activators of transient receptor potential canonical (TRPC)4 and TRPC5 channels. J Biol Chem 287:17029–17039PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426:285–291PubMedCrossRefGoogle Scholar
  42. Kim JY, Zeng W, Kiselyov K, Yuan JP, Dehoff MH, Mikoshiba K, Worley PF, Muallem S (2006) Homer 1 mediates store- and inositol 1,4,5-trisphosphate receptor-dependent translocation and retrieval of TRPC3 to the plasma membrane. J Biol Chem 281:32540–32549PubMedCrossRefGoogle Scholar
  43. Kim MS, Hong JH, Li Q, Shin DM, Abramowitz J, Birnbaumer L, Muallem S (2009) Deletion of TRPC3 in mice reduces store-operated Ca2+ influx and the severity of acute pancreatitis. Gastroenterology 137:1509–1517PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kiselyov K, Xu X, Mozhayeva G (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482PubMedCrossRefGoogle Scholar
  45. Kiselyov K, Mignery GA, Zhu MX, Muallem S (1999) The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 4:423–429PubMedCrossRefGoogle Scholar
  46. Kochukov MY, Balasubramanian A, Noel RC, Marrelli SP (2013) Role of TRPC1 and TRPC3 channels in contraction and relaxation of mouse thoracic aorta. J Vasc Res 50:11–20PubMedCrossRefGoogle Scholar
  47. Kochukov MY, Balasubramanian A, Abramowitz J, Birnbaumer L, Marrelli SP (2014) Activation of endothelial transient receptor potential C3 channel is required for small conductance calcium-activated potassium channel activation and sustained endothelial hyperpolarization and vasodilation of cerebral artery. J Am Heart Assoc 3:e000913PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee KP, Yuan JP, Hong JH, So I, Worley PF, Muallem S (2010) An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett 584:2022–2027PubMedCrossRefGoogle Scholar
  49. Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R, So I, Shin DM, Muallem S, Yuan JP (2014) Molecular determinants mediating gating of transient receptor potential canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem 289:6372–6382PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lewis RS, Cahalan MD (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul 1:99–112PubMedPubMedCentralGoogle Scholar
  51. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104:4682–4687PubMedPubMedCentralCrossRefGoogle Scholar
  52. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105:2895–2900PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A 106:3202–3206PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411PubMedCrossRefGoogle Scholar
  55. Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB, Birnbaumer L, Ambudkar IS (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1-/- mice. Proc Natl Acad Sci U S A 104:17542–17547PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lopez E, Berna-Erro A, Salido GM, Rosado JA, Redondo PC (2013) FKBP52 is involved in the regulation of SOCE channels in the human platelets and MEG 01 cells. Biochim Biophys Acta 1833:652–662PubMedCrossRefGoogle Scholar
  57. Miehe S, Bieberstein A, Arnould I, Ihdene O, Rütten H, Strübing C (2010) The phospholipid-binding protein SESTD1 is a novel regulator of the transient receptor potential channels TRPC4 and TRPC5. J Biol Chem 285:12426–12434PubMedPubMedCentralCrossRefGoogle Scholar
  58. Minke B, Selinger Z (1991) Inositol lipid pathway in fly photoreceptors: excitation, calcium mobilization and retinal degeneration. Prog Retin Res 11:99–124CrossRefGoogle Scholar
  59. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323PubMedCrossRefGoogle Scholar
  60. Mori Y, Wakamori M, Miyakawa T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T, Fleig A, Penner R, Iino M, Kurosaki T (2002) Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J Exp Med 195:673–681PubMedPubMedCentralCrossRefGoogle Scholar
  61. Neuner SM, Wilmott LA, Hope KA, Hoffmann B, Chong JA, Abramowitz J, Birnbaumer L, O’Connell KM, Tryba AK, Greene AS, Savio Chan C, Kaczorowski CC (2015) TRPC3 channels critically regulate hippocampal excitability and contextual fear memory. Behav Brain Res 281:69–77PubMedCrossRefGoogle Scholar
  62. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370PubMedCrossRefGoogle Scholar
  63. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282:9105–9116PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ong HL, Jang SI, Ambudkar IS (2012) Distinct contributions of Orai1 and TRPC1 to agonist-induced [Ca2+]i signals determine specificity of Ca2+-dependent gene expression. PLoS One 7:e47146PubMedPubMedCentralCrossRefGoogle Scholar
  65. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930PubMedGoogle Scholar
  66. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810PubMedCrossRefGoogle Scholar
  67. Petersen CC, Berridge MJ, Borgese MF, Bennett DL (1995) Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J 311:41–44PubMedPubMedCentralCrossRefGoogle Scholar
  68. Phelan KD, Mock MM, Kretz O, Shwe UT, Kozhemyakin M, Greenfield LJ, Dietrich A, Birnbaumer L, Freichel M, Flockerzi V, Zheng F (2012) Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration. Mol Pharmacol 81:384–392PubMedPubMedCentralCrossRefGoogle Scholar
  69. Phelan KD, Shwe UT, Abramowitz J, Wu H, Rhee SW, Howell MD, Gottschall PE, Freichel M, Flockerzi V, Birnbaumer L, Zheng F (2013) Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Mol Pharmacol 83:429–438PubMedPubMedCentralCrossRefGoogle Scholar
  70. Phelan KD, Shwe UT, Abramowitz J, Birnbaumer L, Zheng F (2014) Critical role of canonical transient receptor potential channel 7 in initiation of seizures. Proc Natl Acad Sci U S A 111:11533–11538PubMedPubMedCentralCrossRefGoogle Scholar
  71. Philipp S, Cavalié A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marquart A, Murakami M, Flockerzi V (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J 15:6166–6171PubMedPubMedCentralGoogle Scholar
  72. Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalié A, Flockerzi V (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17:4274–4282PubMedPubMedCentralCrossRefGoogle Scholar
  73. Phillips AM, Bull A, Kelly LE (1992) Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8:631–642PubMedCrossRefGoogle Scholar
  74. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12PubMedCrossRefGoogle Scholar
  75. Putney JW Jr (1991) Capacitative calcium entry revisited. Cell Calcium 11:611–624CrossRefGoogle Scholar
  76. Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744PubMedPubMedCentralCrossRefGoogle Scholar
  77. Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, Gapon S, Yao GL, Tsvetkov E, Rodig SJ, Van’t Veer A, Meloni EG, Carlezon WA Jr, Bolshakov VY, Clapham DE (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137:761–772PubMedPubMedCentralCrossRefGoogle Scholar
  78. Riccio A, Li Y, Tsvetkov E, Gapon S, Yao GL, Smith KS, Engin E, Rudolph U, Bolshakov VY, Clapham DE (2014) Decreased anxiety-like behavior and Gαq/11-dependent responses in the amygdala of mice lacking TRPC4 channels. J Neurosci 34:3653–3667PubMedPubMedCentralCrossRefGoogle Scholar
  79. Riehle M, Büscher AK, Gohlke BO, Kaßmann M, Kolatsi-Joannou M, Bräsen JH, Nagel M, Becker JU, Winyard P, Hoyer PF, Preissner R, Krautwurst D, Gollasch M, Weber S, Harteneck C (2016) TRPC6 G757D loss-of-function mutation associates with FSGS. J Am Soc Nephrol 27:2771–2783PubMedPubMedCentralGoogle Scholar
  80. Rosker C, Graziani A, Lukas M, Eder P, Zhu MX, Romanin C, Groschner K (2004) Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J Biol Chem 279:13696–13704PubMedCrossRefGoogle Scholar
  81. Sabourin J, Bartoli F, Antigny F, Gomez AM, Benitah JP (2016) Transient receptor potential canonical (TRPC)/Orai1-dependent store-operated Ca2+ channels: NEW TARGETS OF ALDOSTERONE IN CARDIOMYOCYTES. J Biol Chem 291:13394–13409PubMedPubMedCentralCrossRefGoogle Scholar
  82. Saliba Y, Karam R, Smayra V, Aftimos G, Abramowitz J, Birnbaumer L, Farès N (2015) Evidence of a role for fibroblast transient receptor potential canonical 3 Ca2+ channel in renal fibrosis. J Am Soc Nephrol 26:1855–1876PubMedCrossRefGoogle Scholar
  83. Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sumimoto H, Mori Y, Makino N (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294:205–215PubMedCrossRefGoogle Scholar
  84. Saul S, Stanisz H, Backes CS, Schwarz EC, Hoth M (2014) How ORAI and TRP channels interfere with each other: interaction models and examples from the immune system and the skin. Eur J Pharmacol 739:49–59PubMedCrossRefGoogle Scholar
  85. Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L, Singh BB (2012) Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 122:1354–1367PubMedPubMedCentralCrossRefGoogle Scholar
  86. Seo K, Rainer PP, Shalkey Hahn V, Lee DI, Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ, Marino JP Jr, Birnbaumer L, Schnackenberg CG, Kass DA (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 111:1551–1556PubMedPubMedCentralCrossRefGoogle Scholar
  87. Seth M, Sumbilla C, Mullen SP, Lewis D, Klein MG, Hussain A, Soboloff J, Gill DL, Inesi G (2004) Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci U S A 101:16683–16688PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sexton JE, Desmonds T, Quick K, Taylor R, Abramowitz J, Forge A, Kros CJ, Birnbaumer L, Wood JN (2016) The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing. Neurosci Lett 610:36–42PubMedPubMedCentralCrossRefGoogle Scholar
  89. Srikanth S, Jew M, Kim KD, Yee MK, Abramson J, Gwack Y (2012) Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 109:8682–8687PubMedPubMedCentralCrossRefGoogle Scholar
  90. Stamboulian S, Moutin MJ, Treves S, Pochon N, Grunwald D, Zorzato F, De Waard M, Ronjat M, Arnoult C (2005) Junctate, an inositol 1,4,5-triphosphate receptor associated protein, is present in rodent sperm and binds TRPC2 and TRPC5 but not TRPC1 channels. Dev Biol 286:326–337PubMedCrossRefGoogle Scholar
  91. Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28:2637–2647PubMedPubMedCentralCrossRefGoogle Scholar
  92. Stroh O, Freichel M, Kretz O, Birnbaumer L, Hartmann J, Egger V (2012) NMDA receptor-dependent synaptic activation of TRPC channels in olfactory bulb granule cells. J Neurosci 32:5737–5746PubMedPubMedCentralCrossRefGoogle Scholar
  93. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655PubMedCrossRefGoogle Scholar
  94. Sun Y, Birnbaumer L, Singh BB (2015) TRPC1 regulates calcium-activated chloride channels in salivary gland cells. J Cell Physiol 230:2848–2856PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sundivakkam PC, Freichel M, Singh V, Yuan JP, Vogel SM, Flockerzi V, Malik AB, Tiruppathi C (2012) The Ca2+ sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca2+ entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol 81:510–526PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tai C, Hines DJ, Choi HB, Macvicar BA (2011) Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. Hippocampus 21:958–967PubMedGoogle Scholar
  97. Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276:21303–21310PubMedPubMedCentralCrossRefGoogle Scholar
  98. Thakur DP, Tian JB, Jeon J, Xiong J, Huang Y, Flockerzi V, Zhu MX (2016) Critical roles of Gi/o proteins and phospholipase C-δ1 in the activation of receptor-operated TRPC4 channels. Proc Natl Acad Sci U S A 113:1092–1097PubMedPubMedCentralCrossRefGoogle Scholar
  99. Thastrup O, Linnebjerg H, Bjerrum PJ, Knudsen JB, Christensen SB (1987) The inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin, activates platelets by selective mobilization of calcium as shown by protein phosphorylations. Biochim Biophys Acta 927:65–73PubMedCrossRefGoogle Scholar
  100. Treves S, Franzini-Armstrong C, Moccagatta L, Arnoult C, Grasso C, Schrum A, Ducreux S, Zhu MX, Mikoshiba K, Girard T, Smida-Rezgui S, Ronjat M, Zorzato F (2004) Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion. J Cell Biol 166:537–548PubMedPubMedCentralCrossRefGoogle Scholar
  101. Treves S, Vukcevic M, Griesser J, Armstrong CF, Zhu MX, Zorzato F (2010) Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions. J Cell Sci 123:4170–4181PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tsvilovskyy VV, Zholos AV, Aberle T, Philipp SE, Dietrich A, Zhu MX, Birnbaumer L, Freichel M, Flockerzi V (2009) Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137:1415–1224PubMedPubMedCentralCrossRefGoogle Scholar
  103. Vaca L (2010) SOCIC: the store-operated calcium influx complex. Cell Calcium 47:199–209PubMedCrossRefGoogle Scholar
  104. Vaca L, Sampieri A (2002) Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels. J Biol Chem 277:42178–42187PubMedCrossRefGoogle Scholar
  105. Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96:2060–2064PubMedPubMedCentralCrossRefGoogle Scholar
  106. Vazquez G, Lievremont JP, St J Bird G, Putney JW Jr (2001) Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes. Proc Natl Acad Sci U S A 98:11777–11782PubMedPubMedCentralCrossRefGoogle Scholar
  107. Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Mederos y Schnitzler M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA 103:19093–19098PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92:9652–9656PubMedPubMedCentralCrossRefGoogle Scholar
  109. Winn MP, Conlon PJ, Lynn KL (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804PubMedCrossRefGoogle Scholar
  110. Woo JS, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y (2016) Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A 113:2762–2767PubMedPubMedCentralCrossRefGoogle Scholar
  111. Worley PF, Zeng W, Huang GN, Yuan JP, Kim JY, Lee MG, Muallem S (2007) TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 42:205–211PubMedPubMedCentralCrossRefGoogle Scholar
  112. Xu N, Cioffi DL, Alexeyev M, Rich TC, Stevens T (2015) Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1. Am J Physiol Cell Physiol 308:C277–C288PubMedCrossRefGoogle Scholar
  113. Yan HD, Villalobos C, Andrade R (2009) TRPC channels mediate a muscarinic receptor-induced afterdepolarization in cerebral cortex. J Neurosci 29:10038–10046PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yuan JP, Kiselyov K, Shin DM et al (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789PubMedCrossRefGoogle Scholar
  115. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636–645PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32:439–448PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, Dietrich A, Stefani E, Birnbaumer L, Zhu MX (2001) Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci U S A 98:3168–3173PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198PubMedCrossRefGoogle Scholar
  119. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671PubMedCrossRefGoogle Scholar
  120. Zhu X, Jiang M, Birnbaumer L (1998) Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney HEK293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem 273:133–142PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexis Bavencoffe
    • 1
  • Michael Xi Zhu
    • 1
    Email author
  • Jin-bin Tian
    • 1
  1. 1.Department of Integrative Biology and Pharmacology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations