Advertisement

Introduction

  • James W. PutneyEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 993)

Abstract

This second edition volume will present an updated, state-of-the art description and analysis of the rapidly expanding field of store-operated Ca2+ entry (SOCE). And this first part will deal with the most fundamental mechanistic concepts underlying this process. In this brief introduction, I will try to summarize the historical development of the concept of store-operated Ca2+ entry and say a bit about some recent work that speaks to its general function in cell signaling. Much of the material below is taken from the Introduction to the first edition, updated for the second edition.

Keywords

Calcium channels Orai STIM1 Oscillations Store-operated channels Mouse models 

References

  1. Ali H, Christensen SB, Foreman JC, Pearce FL, Piotrowski W, Thastrup O (1985) The ability of thapsigargin and thapsigargicin to activate cells involved in the inflammatory response. Br J Pharmacol 85:705–712CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858CrossRefPubMedPubMedCentralGoogle Scholar
  3. Biden TJ, Prentki M, Irvine RF, Berridge MJ, Wollheim CB (1984) Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells. Biochem J 223:467–473CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bohr DF (1963) Vascular smooth muscle: dual effect of calcium. Science 139:597–599CrossRefPubMedGoogle Scholar
  5. Bohr DF (1973) Vascular smooth muscle updated. Circ Res 32:665–672CrossRefPubMedGoogle Scholar
  6. Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718PubMedGoogle Scholar
  7. Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF, Putney JW Jr (1984) The second messenger linking receptor activation to internal Ca release in liver. Nature 309(5963):63–66CrossRefPubMedGoogle Scholar
  8. Cahalan MD, Zhang SL, Yeromin AV, Ohlsen K, Roos J, Stauderman KA (2007) Molecular basis of the CRAC channel. Cell Calcium 42:133–144CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caron-Leslie LM, Cidlowski JA (1991) Similar actions of glucocorticoids and calcium on the regulation of apoptosis in S49 cells. Mol Endocrinol 5:1169–1179CrossRefPubMedGoogle Scholar
  10. Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery. J Physiol (Lond) 317:263–279CrossRefGoogle Scholar
  11. Chang WC, Di Capite J, Singaravelu K, Nelson C, Halse V, Parekh AB (2008) Local Ca2+ influx through Ca2+ release-activated Ca2+ (CRAC) channels stimulates production of an intracellular messenger and an intercellular pro-inflammatory signal. J Biol Chem 283:4622–4631CrossRefPubMedGoogle Scholar
  12. Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca(2)+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca(2)+ signals required for specific cell functions. PLoS Biol 9:e1001025CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cooper DMF, Yoshimura M, Zhang Y, Chiono M, Mahey R (1994) Capacitative Ca2+ entry regulates Ca2+-sensitive adenylyl cyclases. Biochem J 297:437–440CrossRefPubMedPubMedCentralGoogle Scholar
  14. Csutora P, Peter K, Kilic H, Park KM, Zarayskiy V, Gwozdz T, Bolotina VM (2008) Novel role for STIM1 as a trigger for calcium influx factor production. J Biol Chem 283:14524–14531CrossRefPubMedPubMedCentralGoogle Scholar
  15. Davis FM, Janoshazi A, Janardhan KS, Steinckwich N, D’Agostin DM, Petranka JG, Desai PN, Roberts-Thomson SJ, Bird GS, Tucker DK, Fenton SE, Feske S, Monteith GR, Putney JW Jr (2015) Essential role of Orai1 store-operated calcium channels in lactation. Proc Natl Acad Sci U S A 112:5827–5832CrossRefPubMedPubMedCentralGoogle Scholar
  16. Davis FM, Goulding EH, D’Agostin DM, Janardhan KS, Cummings CA, Bird GS, Eddy EM, Putney JW (2016) Male infertility in mice lacking the store-operated Ca(2+) channel Orai1. Cell Calcium 59:189–197CrossRefPubMedPubMedCentralGoogle Scholar
  17. DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282:17548–17556CrossRefPubMedGoogle Scholar
  18. Desai PN, Zhang X, Wu S, Janoshazi A, Bolimuntha S, Putney JW, Trebak M (2015) Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Sci Signal 8:ra74CrossRefPubMedPubMedCentralGoogle Scholar
  19. Di Capite J, Ng SW, Parekh AB (2009) Decoding of cytoplasmic Ca(2+) oscillations through the spatial signature drives gene expression. Curr Biol 19:853–858CrossRefPubMedGoogle Scholar
  20. Dupont G, Combettes L, Bird GS, Putney JW (2011) Calcium oscillations. Cold Spring Harb Perspect Biol 3(3):a004226CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feng M, Grice DM, Faddy HM, Nguyen N, Leitch S, Wang Y, Muend S, Kenny PA, Sukumar S, Roberts-Thomson SJ, Monteith GR, Rao R (2010) Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143:84–98CrossRefPubMedPubMedCentralGoogle Scholar
  22. Feske S (2010) CRAC channelopathies. Pflugers Arch 460(2):417–435CrossRefPubMedPubMedCentralGoogle Scholar
  23. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185CrossRefPubMedGoogle Scholar
  24. Grigoriev I, Gouveia SM, van der Vaart B, Demmers J, Smyth JT, Honnappa S, Splinter D, Steinmetz MO, Putney JW Jr, Hoogenraad CC, Akhmanova A (2008) STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr Biol 18:177–182CrossRefPubMedPubMedCentralGoogle Scholar
  25. Grynkiewicz G, Poenie M, Tsien RY (1986) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450Google Scholar
  26. Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–355CrossRefPubMedGoogle Scholar
  28. Hwang SY, Putney JW (2012) Orai1-mediated calcium entry plays a critical role in osteoclast differentiation and function by regulating activation of the transcription factor NFATc1. FASEB J 26:1484–1492CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hwang SY, Foley J, Numaga-Tomita T, Petranka JG, Bird GS, Putney JW Jr (2012) Deletion of Orai1 alters expression of multiple genes during osteoclast and osteoblast maturation. Cell Calcium 52:488–500CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jackson TR, Patterson SI, Thastrup O, Hanley MR (1988) A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J 253:81–86CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kar P, Nelson C, Parekh AB (2011) Selective activation of the transcription factor NFAT1 by calcium microdomains near Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem 286:14795–14803CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105:2895–2900CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241CrossRefPubMedPubMedCentralGoogle Scholar
  34. Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56:485–508CrossRefPubMedGoogle Scholar
  35. Muallem S, Khademazad M, Sachs G (1990) The route of Ca2+ entry during reloading of the intracellular Ca2+ pool in pancreatic acini. J Biol Chem 265:2011–2016PubMedGoogle Scholar
  36. Ng SW, Di Capite J, Singaravelu K, Parekh AB (2008) Sustained activation of the tyrosine kinase syk by antigen in mast cells requires local Ca2+ influx through Ca2+ release-activated Ca2+ channels. J Biol Chem 283:31348–31355CrossRefPubMedGoogle Scholar
  37. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317CrossRefPubMedGoogle Scholar
  38. Numaga-Tomita T, Putney JW (2013) Role of STIM1- and Orai1-mediated Ca2+ entry in Ca2+-induced epidermal keratinocyte differentiation. J Cell Sci 126:605–612CrossRefPubMedPubMedCentralGoogle Scholar
  39. Orrenius S, McConkey DJ, Bellomo G, Nicotera P (1989) Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci 10:281–285CrossRefPubMedGoogle Scholar
  40. Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36:78–87CrossRefPubMedGoogle Scholar
  41. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810CrossRefPubMedGoogle Scholar
  42. Parod RJ, Putney JW Jr (1978) The role of calcium in the receptor mediated control of potassium permeability in the rat lacrimal gland. J Physiol Lond 281:371–381CrossRefPubMedPubMedCentralGoogle Scholar
  43. Patkar SA, Rasmussen U, Diamant B (1979) On the mechanism of histamine release induced by thapsigargin from Thapsia garganica L. Agents Actions 9:53–57CrossRefPubMedGoogle Scholar
  44. Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436CrossRefPubMedPubMedCentralGoogle Scholar
  45. Prentki M, Biden TJ, Janjic D, Irvine RF, Berridge MJ, Wollheim CB (1984) Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature 309:562–564CrossRefPubMedGoogle Scholar
  46. Putney JW Jr (1976) Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine. J Pharmacol Exp Ther 198:375–384PubMedGoogle Scholar
  47. Putney JW Jr (1977) Muscarinic, alpha-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. J Physiol (Lond) 268:139–149CrossRefPubMedCentralGoogle Scholar
  48. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12CrossRefPubMedGoogle Scholar
  49. Putney JW Jr, Poggioli J, Weiss SJ (1981) Receptor regulation of calcium release and calcium permeability in parotid gland cells. Philos Trans R Soc Lond B 296:37–45CrossRefGoogle Scholar
  50. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408CrossRefPubMedGoogle Scholar
  51. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445CrossRefPubMedPubMedCentralGoogle Scholar
  52. Samanta K, Bakowski D, Parekh AB (2014) Key role for store-operated Ca2+ channels in activating gene expression in human airway bronchial epithelial cells. PLoS One 9:e105586CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3–13CrossRefPubMedGoogle Scholar
  54. Sitrin MD, Bohr DF (1971) Ca and Na interaction in vascular smooth muscle contraction. Am J Physiol 220:1124–1128PubMedGoogle Scholar
  55. Slack BE, Bell JE, Benos DJ (1986) Inositol 1,4,5-trisphosphate injection mimics fertilization potentials in sea urchin eggs. Am J Physiol 250:C340–C344PubMedGoogle Scholar
  56. Smyth JT, Beg AM, Wu S, Putney JW Jr, Rusan NM (2012) Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle. Curr Biol 22:1487–1493CrossRefPubMedPubMedCentralGoogle Scholar
  57. Steinckwich N, Myers P, Janardhan KS, Flagler ND, King D, Petranka JG, Putney JW (2015) Role of the store-operated calcium entry protein, STIM1, in neutrophil chemotaxis and infiltration into a murine model of psoriasis-inflamed skin. FASEB J 29:3003–3013CrossRefPubMedPubMedCentralGoogle Scholar
  58. Steinsland OS, Furchgott RF, Kirpekar SM (1973) Biphasic vasoconstriction of the rabbit ear artery. Circ Res 32:49–58CrossRefPubMedGoogle Scholar
  59. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial store in pancreatic cells by inositol-1,4,5-trisphosphate. Nature 306:67–68CrossRefPubMedGoogle Scholar
  60. Streb H, Bayerdorffer E, Haase W, Irvine RF, Schulz I (1984) Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J Membr Biol 81:241–253CrossRefPubMedGoogle Scholar
  61. Takemura H, Putney JW Jr (1989) Capacitative calcium entry in parotid acinar cells. Biochem J 258:409–412CrossRefPubMedPubMedCentralGoogle Scholar
  62. Takemura H, Hughes AR, Thastrup O, Putney JW Jr (1989) Activation of calcium entry by the tumor promoter, thapsigargin, in parotid acinar cells. Evidence that an intracellular calcium pool, and not an inositol phosphate, regulates calcium fluxes at the plasma membrane. J Biol Chem 264:12266–12271PubMedGoogle Scholar
  63. Thastrup O, Foder B, Scharff O (1987) The calcium mobilizing tumor promoting agent, thapsigargin elevates the platelet cytoplasmic free calcium concentration to a higher steady state level. A possible mechanism of action for the tumor promotion. Biochem Biophys Res Commun 142:654–660CrossRefPubMedGoogle Scholar
  64. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci U S A 87:2466–2470CrossRefPubMedPubMedCentralGoogle Scholar
  65. Thompson JL, Shuttleworth TJ (2013) Exploring the unique features of the ARC channel, a store-independent Orai channel. Channels (Austin) 7:364–373CrossRefGoogle Scholar
  66. Tymianski M (1996) Cytosolic calcium concentrations and cell death in vitro. Adv Neurol 71:85–105PubMedGoogle Scholar
  67. Ueda T, Church SH, Noel MW, Gill DL (1986) Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line. J Biol Chem 261:3184–3192PubMedGoogle Scholar
  68. van Breemen C (1969) Blockade of membrane calcium fluxes by lanthanum in relation to vascular smooth muscle contractility. Arch Int Physiol Biochim 77:710–716PubMedGoogle Scholar
  69. van Breemen C, Farinas BR, Casteels R, Gerba P, Wuytack F, Deth R (1973) Factors controlling cytoplasmic Ca 2+ concentration. Philos Trans R Soc Lond B Biol Sci 265:57–71CrossRefPubMedGoogle Scholar
  70. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223CrossRefPubMedGoogle Scholar
  71. Willoughby D, Everett KL, Halls ML, Pacheco J, Skroblin P, Vaca L, Klussmann E, Cooper DM (2012) Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci Signal 5:ra29CrossRefPubMedGoogle Scholar
  72. Xing J, Petranka JG, Davis FM, Desai PN, Putney JW, Bird GS (2013) Role of orai1 and store-operated calcium entry in mouse lacrimal gland signaling and function. J Physiol (Lond) 592:927–939CrossRefGoogle Scholar
  73. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 103:9357–9362CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhang X, Gonzalez-Cobos JC, Schindl R, Muik M, Ruhle B, Motiani RK, Bisaillon JM, Zhang W, Fahrner M, Barroso M, Matrougui K, Romanin C, Trebak M (2013) Mechanisms of STIM1 activation of store-independent leukotriene C4-regulated Ca2+ channels. Mol Cell Biol 33:3715–3723CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 90:6295–6299CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.The Signal Transduction Laboratory, Department of Health and Human ServicesNational Institute of Environmental Health Sciences – NIHResearch Triangle ParkUSA

Personalised recommendations