Skip to main content

Overview of Radiologic Quality Assurance and the Imaging Evaluation of Breast Lesions

  • Chapter
  • First Online:
Diagnosis and Management of Breast Tumors
  • 2168 Accesses

Abstract

Breast imaging is a clinically oriented subspecialty that, in addition to following professional society and group-specific practice parameters, is overseen by government agencies to ensure the quality and safety of imaging and patient care. These measures contribute to the efficacy of breast cancer screening, which in turn allows for significant decreases in mortality and increased treatment options through early detection. Nonethless, there are controversies regarding the use of mammography. Other modalities routinely utilized in the work up of breast diseases include ultrasound and MRI. Through discussion of both standardized and patient - centered care practices, the breast imaging evaluation of benign and malignant processes is introduced in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Cardenosa G. Clinical breast imaging, the essentials. Philadelphia, PA: Wolters Kluwer; 2015.

    Google Scholar 

  2. Destout JM, Bassett LW, Yaffe MJ, et al. The ACR’s mammography accreditation program: ten years of experience since MQSA. J Am Coll Radiol. 2005;2(7):585–94.

    Article  Google Scholar 

  3. https://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/default.htm

  4. Burnside E, Sickles EA, Bassett LW, et al. The ACR BI-RADS experience: learning from history. J Am Coll Radiol. 2009;6(12):851–60.

    Article  PubMed  PubMed Central  Google Scholar 

  5. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA, et al. ACR BI-RADS® Atlas breast imaging reporting and data system. Reston, VA: American College of Radiology; 2013.

    Google Scholar 

  6. Lee AY, Wisner DJ, Aminololama-Shakeri S, et al. Inter-reader variability in the use of BI-RADS descriptors for suspicious findings on diagnostic mammography: a multi-institution study of 10 academic radiologists. Acad Radiol. 2017;24(1):60–6. Accessed 23 Feb 2017

    Article  PubMed  Google Scholar 

  7. Berg WA, D’Orsi C, Jackson V, et al. Does training in the breast imaging reporting and data system (BI-RADS) improve biopsy recommendations or feature analysis agreement with experienced breast imagers at mammography? Radiology. 2002;224(3):871–80. doi:10.1148/radiol.2243011626. Accessed 25 Feb 2017

    Article  PubMed  Google Scholar 

  8. Blanks RG, Moss SM, Wallis MG. Use of two view mammography compared with one view in the detection of small invasive cancers: further results from the National Health Service breast screening programme. J Med Screen. 1997;4(2):98–101. doi:10.1177/096914139700400206.

    Article  CAS  PubMed  Google Scholar 

  9. https://seer.cancer.gov/statfacts/html/breast.html. Accessed 19 Feb 2017.

  10. Tabar L, Duffy SW, et al. Breast cancer treatment and natural history: new insights from results of screening. Lancet. 1992;339(8790):412–4.

    Article  CAS  PubMed  Google Scholar 

  11. NCI-funded Breast Cancer Surveillance Consortium (HHSN261201100031C). Downloaded 01/09/2017 from the Breast Cancer Surveillance Consortium web site—http://breastscreening.cancer.gov/statistics/benchmarks/screening/2009/tableSensSpec.html

  12. Lehman CD, Arao RF, Sprague BL, et al. National performance benchmarks for modern screening digital mammography: update from the Breast Cancer Surveillance Consortium. Radiology. 2017;283(1):49–58. doi:10.1148/radiol.2016161174. Accessed 5 Feb 2017

    Article  PubMed  Google Scholar 

  13. Tabar L, Yen M, Vitak B, et al. Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening. Lancet. 2003;361:1405–10.

    Article  PubMed  Google Scholar 

  14. Ray KM, Price ER, Joe BN. Evidence to support screening women in their 40s. Radiol Clin N Am. 2017;55(3):429–39. doi:10.1016/j.rcl.2016.12.002. Accessed 5 Feb 2017

    Article  PubMed  Google Scholar 

  15. Tabar L, Faberberg G, Day NE, Holmberg L. What is the optimum interval between mammographic examinations?—an analysis based on the latest results of the Swedish two-county breast cancer screening trial. Br J Cancer. 1987;55:547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hellquist BN, Duffy SW, Abdsaleh S, Björneld L, Bordás P, Tabár L, Viták B, Zackrisson S, Nyström L, Jonsson H. Effectiveness of population-based service screening with mammography for women ages 40–49 years. Cancer. 2011;117(4):714–22.

    Article  PubMed  Google Scholar 

  17. Tabár L, Vitak B, Chen TH-H, Yen AM-F, Cohen A, Tot T, Chiu SY-H, Chen SL-S, Fann JC-Y, Rosell J, Fohlin H, Smith RA, Duffy SW. Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology. 2011;260(3):658–63.

    Article  PubMed  Google Scholar 

  18. Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y, Wang Y, Kelly Marcom P, Marks JR, Febbo PG, Nevins JR, Potti A, Blackwell KL. Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol. 2008;26(20):3324–30.

    Article  PubMed  Google Scholar 

  19. El Saghir NS, Seoud M, Khalil MK, Charafeddine M, Salem ZK, Geara FB, Shamseddine AI. Effects of young age at presentation on survival in breast cancer. BMC Cancer. 2006;6(1):194. doi:10.1186/1471-2407-6-194.

    Article  PubMed  PubMed Central  Google Scholar 

  20. https://www.uspreventiveservicestaskforce.org

  21. https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html

  22. US Preventive Services Task Force. Screening for breast cancer: U.S. preventive services task force recommendation statement. Ann Intern Med. 2009;151(10):716.

    Article  Google Scholar 

  23. Tosteson AN, Fryback DG, Hammond CS. Consequences of false-positive screening mammograms. JAMA. 2014;174(6):954–61.

    Google Scholar 

  24. Brodersen J, Siersma VD. Long-term psychosocial consequences of false-positive screening mammography. Ann Fam Med. 2013;11(2):106–15.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee J, Hardesty LA, Kunzler NM, Rosenkrantz AB. Direct interactive public education by breast radiologists about screening mammography: impact on anxiety and empowerment. J Am Coll Radiol. 2016;13(1):12–20.

    Article  PubMed  Google Scholar 

  26. Hislop TG, Harris SR, Jackson J, Thorne SE, Rousseau EJ, Coldman AJ, Vestrup JA, Wright CJ, Olivotto IA. Satisfaction and anxiety for women during investigation of an abnormal screening mammogram. Breast Cancer Res Treat. 2002;76(3):245–54.

    Article  PubMed  Google Scholar 

  27. Hauge IHR, Pedersen K, Olerud HM, Hole EO, Hofvind S. The risk of radiation-induced breast cancers due to biennial mammographic screening in women aged 50–69 years is minimal. Acta Radiol. 2014;55(10):1174–9.

    Article  PubMed  Google Scholar 

  28. Skaane P. Dose hysteria and concern about radiation exposure should not prevent women from undergoing life-saving mammography screening. Acta Radiol. 2014;55(10):1155–6.

    Article  PubMed  Google Scholar 

  29. Hendrick RE. Radiation doses and cancer risks from breast imaging studies. Radiology. 2010;257:246–53. doi:10.1148/radiol.10100570. Accessed 26 Feb 2017

    Article  PubMed  Google Scholar 

  30. Linver MN, Paster SB, Rosenberg RD, Key CR, Stidley CA, King WV. Improvement in mammography interpretation skills in a community radiology practice after dedicated teaching courses: 2-year medical audit of 38,633 cases. Radiology. 1992;184(1):39–43. doi:10.1148/radiology.184.1.1609100. Accessed 13 Aug 2017

  31. https://www.acr.org/~/media/ACR/Documents/PDF/Annual%20Meeting/Abstracts/2016/16079/16079_Rabinovich.pdf. Accessed 30 May 2017.

  32. Harvey SC, Geller B, Oppenheimer RG, Pinet M, Riddell L, Garra B. Increase in cancer detection and recall rates with independent double interpretation of screening mammography. Am J Roentgenol. 2003;180(5):1461–7.

    Article  Google Scholar 

  33. Sharpe RE, Venkataraman S, Phillips J, Dialani V, Fein-Zachary VJ, Prakash S, Slanetz PJ, Mehta TS. Increased cancer detection rate and variations in the recall rate resulting from implementation of 3D digital breast tomosynthesis into a population-based screening program. Radiology. 2016;278(3):698–706.

    Article  PubMed  Google Scholar 

  34. Rafferty EA, Park JM, Philpotts LE, Poplack SP, Sumkin JH, Halpern EF, Niklason LT. Diagnostic accuracy and recall rates for digital mammography and digital mammography combined with one-view and two-view tomosynthesis: results of an enriched reader study. Am J Roentgenol. 2014;202(2):273–81.

    Article  Google Scholar 

  35. Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U, Izadi M, Jebsen IN, Jahr G, Krager M, Niklason LT, Hofvind S, Gur D. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267(1):47–56.

    Article  PubMed  Google Scholar 

  36. Comparative effectiveness of core-needle and open surgical biopsy for the diagnosis of breast lesions—executive summary. https://effectivehealthcare.ahrq.gov/ehc/products/17/372/execsummforposting.pdf. Accessed 23 Jan 2017.

  37. Somerville P, Seifert PJ, Destounis SV, et al. Anticoagulation and bleeding risk after core needle biopsy. AJR Am J Roentgenol. 2008;191:1194–7.

    Article  PubMed  Google Scholar 

  38. Harvey JA, Bovbjerg V. Quantitative assessment of mammographic breast density: relationship with breast cancer risk. Radiology. 2004;230:29–41.

    Article  PubMed  Google Scholar 

  39. Sickles EA, D’Orsi CJ, Bassett LW, et al. ACR BI-RADS® mammography. In: ACR BI-RADS® Atlas, editor. Breast imaging reporting and data system. Reston, VA: American College of Radiology; 2013.

    Google Scholar 

  40. Gard CC, Aiello Bowles EJ, Miglioretti DL, Taplin SH, Rutter CM. Misclassification of Breast Imaging Reporting and Data System (BI-RADS) mammographic density and implications for breast density reporting legislation. Breast J. 2015;21(5):481–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Berg WA, Blume JD, Cormack JB. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brem RF, Lenihan MJ, Lieberman J, et al. Screening breast ultrasound: past, present, and future. AJR Am J Roentgenol. 2015;204:234–40.

    Article  PubMed  Google Scholar 

  43. Bartella L, Dershaw DD. Magnetic resonance imaging of the invasive breast carcinoma. In: Morris E, Liberman L, editors. Breast MRI: diagnosis and intervention. New York, NY: Springer; 2005.

    Google Scholar 

  44. Morris EA, Comstock CE, Lee CH, et al. ACR BI-RADS® magnetic resonance imaging. In: ACR BI-RADS® Atlas, editor. Breast imaging reporting and data system. Reston, VA: American College of Radiology; 2013.

    Google Scholar 

  45. Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology. 2001;220(1):13–30.

    Article  CAS  PubMed  Google Scholar 

  46. Liu PF, Debatin JF, Caduff RF, Kacl G, Garzoli E, Krestin GP. Improved diagnostic accuracy in dynamic contrast enhanced MRI of the breast by combined quantitative and qualitative analysis. Br J Radiol. 1998;71(845):501–9.

    Article  CAS  PubMed  Google Scholar 

  47. Surratt JT, Monsees BS, Mazoujian G. Calcium oxalate microcalcifications in the breast. Radiology. 1991;181:141–2. doi:10.1148/radiology.181.1.1887023. Accessed 26 Feb 2017

    Article  CAS  PubMed  Google Scholar 

  48. Harish MG, Konda SD, MacMahon G, Newstead GM. Breast lesions incidentally detected with CT: what the general radiologist needs to know. Radiographics. 2007;27(1):S37–51. doi:10.1148/rg.27si075510. Accessed 25 Feb 2017

    Article  PubMed  Google Scholar 

  49. Ernster VL, Barclay MS, Kerlikowske K, et al. Incidence of and treatment for ductal carcinoma of the breast. JAMA. 1996;275(12):913–8. doi:10.1001/jama.1996.03530360023033. Accessed 26 Feb 2017

    Article  CAS  PubMed  Google Scholar 

  50. Ernster VL, Barclay J. Increases in ductal carcinoma in situ (DCIS) of the breast in relation to mammography: a dilemma. J Natl Cancer Inst Monogr. 1996;22:151–6. Accessed 25 Feb 2017

    Google Scholar 

  51. Bolmgren J, Jacobson B, Nordenström B. Stereotaxic instrument for needle biopsy of the mamma. AJR Am J Roentgenol. 1977;129(1):121–5. doi:10.2214/ajr.129.1.121. Accessed 26 Feb 2017

    Article  CAS  PubMed  Google Scholar 

  52. Lewin J. Breast biopsy: beyond the basics; Part I: getting the tissue. Presentation slides ACR society of breast imaging symposium; 2016. https://www.sbi-online.org/Portals/0/Breast%20Imaging%20Symposium%202016/Final%20Presentations/312C%20Lewin-Flowers%20-%20Breast%20Biopsy%20Beyond%20the%20Basics.pdf. Accessed 29 Jan 2017.

  53. Philpotts LE, Shaheen NA, Carter D, Lange RC, Lee CH. Comparison of rebiopsy rates after stereotactic core needle biopsy of the breast with 11-gauge vacuum suction probe versus 14-gauge needle and automatic gun. AJR Am J Roentgenol. 1999;172:683–7. doi:10.2214/ajr.172.3.10063860. Accessed 26 Feb 2017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti A. Shah MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Shah, P.A. (2018). Overview of Radiologic Quality Assurance and the Imaging Evaluation of Breast Lesions. In: Idowu, M., et al. Diagnosis and Management of Breast Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-57726-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57726-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57725-8

  • Online ISBN: 978-3-319-57726-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics