Skip to main content

City Resilience to Climate Change

  • Chapter
  • First Online:
Book cover Rooftop Urban Agriculture

Part of the book series: Urban Agriculture ((URBA))

Abstract

This chapter addresses the problem of city resilience to climate change and to the applicable methodologies to improve the capacity to ameliorate the population wellbeing. Future scenarios of the physiological equivalent temperature indicate the magnitude of the phenomenon. The best available technologies to mitigate such problem seem to be the utilization of vegetation in open spaces, including roof top farming. The modelling of real cases demonstrate the effectiveness of such green improvements, encouraging policies to greenness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bethea D, Parsons K (2002) Development of a practical heat stress assessment methodology for use in UK industry. Loughborough University. http://www.hse.gov.uk/research/rrpdf/rr008.pdf

  • Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three-dimensional numerical model. Environ Softw Model 13:373–384

    Article  Google Scholar 

  • Bugliarello G (2003) Large urban concentration: a new phenomenon. In: Earth science in the city: a Read-er. AGU, Washington, DC, pp 7–19

    Google Scholar 

  • Carmin J, Nadkarni N, RhieC (2012) Progress and challenges in urban climate adaptation planning: result of a global survey. MIT, Cambridge, MA, p 30

    Google Scholar 

  • Carter JG, Cavan G, Connelly A, Guy S, Handley J, Kazmierczak A (2015) Climate change and the city: building capacity for urban adaptation. Prog Plan 95:1–66

    Article  Google Scholar 

  • Conti S, Meli P, Minelli G, Solimini R, Toccaceli V, Vichi M, Beltrano C, Perini L (2005) Epidemiologic study of mortality during the summer 2003 heat wave in Italy. Environ Res 98:390–399

    Article  CAS  PubMed  Google Scholar 

  • Cuvelier C, Segal A, van Steenhoven AA (1986) Finite element methods and Navier-Stokes equations. Kluwer, Dordrecht, p 504

    Book  Google Scholar 

  • Dickson E, Baker JL, Hoornweg D, Tiwari A (2009) Urban risk assessments understanding disaster and climate risk in cities, Urban Development Series. World Bank, Washington DC, p 256

    Google Scholar 

  • Eurostat Census Hub (2011) The 2011 Census database. http://ec.europa.eu/eurostat/web/population-and-housing-census/census-data/2011-census

  • Fanger PO (1972) Thermal comfort: analysis and applications in environmental engineering. McGraw-Hill, New York, p 244

    Google Scholar 

  • Fortezza F, Strocchi V, Giovanelli G, Bonasoni P, Georgiadis T (1993) Transport of photochemical oxidants along the Northwestern Adriatic coast. Atmos Environ Part A 27(15):2393–2402

    Article  Google Scholar 

  • Foster J, Lowe A, Winkelman S (2011) The value of green infrastructure for urban climate adaptation. Center for clean air policy. html://www.ccap.org. Accessed 16 Dec 2015

    Google Scholar 

  • Georgiadis T (2015) Urban climate and risk. In: Oxford Handbooks Online, ed. XX. New York: Oxford University Press, (forthcoming)

    Google Scholar 

  • Georgiadis T, Lokoshchenko MA, Screti C, Vagnoli C (eds) (2013) Two hundred years of urban meteorology in the heart of Florence. In: Proceedings of the international conference on urban climate and history of meteorology. Firenze, Italy, 25th/26th February http://www.bo.ibimet.cnr.it/repository/proceedings. Accessed 15 Dec 2015

  • Grimm NB, Faeth SH, Golubiewsky NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760

    Article  CAS  PubMed  Google Scholar 

  • Helliwell JF, Layard R, Sachs J (2013) World happiness report 2013. New York: UN sustainable development solutions Network Editor, pp 154. http://faculty.arts.ubc.ca/jhelliwell/papers/WorldHappinessReport2013_online.pdf. Accessed 15 Dec 2015

  • IPCC Fifth Assessment Report (2013) Climate Change 2013 (AR5). Intergovernmental panel on climate change. https://www.ipcc.ch/report/ar5/. Accessed 15 Dec 2015

  • Kalkstein LS, Greene S, Mills MD, Samenow J (2011) An evaluation of the progress in reducing heat-related human mortality in major U.S. cities. Nat Hazards 56:113–129

    Article  Google Scholar 

  • Koppe C, Kovats S, Jendritzky G, Menne B (2004) Heat-waves: risks and responses. World Health Or-ganisation. http://www.euro.who.int/document/E82629.pdf. Accessed 15 Dec 2015

  • Levizzani V, Georgiadis T, Isard S (1998) Meteorological aspect of the aerobiological pathway. In: Mandrioli P, Comtois P, Levizzani V (eds) Methods in aerobiology. Pitagora Editrice, Bologna, pp 113–185

    Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index:physiological equivalent temperature. Int J Biometeorol 43:76–84

    Article  CAS  PubMed  Google Scholar 

  • Matzarakis A, Georgiadis T, Rossi F (2007) Thermal bioclimate analysis for Europe and Italy. II Nuovo Cimento 30C(6):623–632

    Google Scholar 

  • Mills G (2014) Urban climatology: history, status and prospects. Urban Clim 10:479–489

    Article  Google Scholar 

  • Morabito M, Crisci A, Gioli B, Gualtieri G, Toscano P, Di Stefano V, Orlandini S, Gensini GF (2015) Urban-hazard risk analysis: mapping of heat-related risks in the elderly in major Italian cities. PLoS One 18(May):18

    Google Scholar 

  • Niitsu N, Tokura M (2015) Greenery to citizens! Urban agriculture in Yokohama City, Kanagawa Prefecture. Japan for sustainability. http://www.japanfs.org/en/news/archives/news_id035384.html. Accessed 15 Dec 2015

  • Oke TR (1987) The surface energy budgets of urban area. In: Modelling the urban boundary layer. AMS, Boston, pp 1–52

    Google Scholar 

  • Oke TR (1988) The urban energy balance. Prog Phys Geogr 12(4):471–508

    Article  Google Scholar 

  • Oke TR (2006) Towards better scientific communication in urban climate. Theor Appl Climatol 84:179–190

    Article  Google Scholar 

  • Oke TR, Johnson GT, Steyn DG, Watson ID (1991) Simulation of surface urban heat islands under “ideal” conditions at night. Part 2: diagnosis of causation. Bound-Layer Meteorol 56:339–358

    Article  Google Scholar 

  • Peng S, Piao S, Ciais P, Friedlingstein P, Ottle C, Bréon F-M, Nan H, Zhou L, Myneni RB (2012) Surface Urban Heat Island across 419 global big cities. Environ Sci Technol 46:696–703

    Article  CAS  PubMed  Google Scholar 

  • Poumadère M, Mays C, Le Mer S, Blong R (2005) The 2003 heat wave in France: dangerous climate change here and now. Risk Anal 25(6):1483–1494

    Article  PubMed  Google Scholar 

  • Rey G, Fouillet A, Bassemoulin P, Frayssinet P, Dufour A, Jougla E, Hemon D (2009) Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality. Eur J Epidemiol 24:495–502

    Article  PubMed  Google Scholar 

  • Rockefeller Foundation ARUP (2014) City resilience index: research report volume 1. Desk Study. p 53

    Google Scholar 

  • Roclöv J, Forsberg B, Ebi K, Bellander T (2014) Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden. Glob Health Action 7:1–11

    Google Scholar 

  • Sailor DJ, Lu L (2004) A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos Environ 38:2737–2748

    Article  CAS  Google Scholar 

  • Semenza JC, McCullogh JE, Flanders WD, McGeehin MA, Lumpkin JR (1999) Excess hospital admissions during the July 1995 heat wave in Chicago. Am J Prev Med 16(4):269–399

    Article  CAS  PubMed  Google Scholar 

  • Souch C, Grimmond S (2006) Applied climatology: urban climate. Prog Phys Geogr 30(2):270–279

    Article  Google Scholar 

  • Taha H (1997) Urban climates and heat islands: Albedo, evapotranspiration and anthropogenic heat. Energy Build 25:99–103

    Article  Google Scholar 

  • The urban Technologist (2014) 12 simple technologies for cities that are smart, open and fair. http://theurbantechnologist.com. Accessed 15 Dec 2015

  • Wesseling P (2001) Principles of computational fluid dynamics. Springer, Berlin, p 644

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodoro Georgiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Georgiadis, T., Iglesias, A., Iglesias, P. (2017). City Resilience to Climate Change. In: Orsini, F., Dubbeling, M., de Zeeuw, H., Gianquinto, G. (eds) Rooftop Urban Agriculture. Urban Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-57720-3_15

Download citation

Publish with us

Policies and ethics