Produce Quality and Safety

  • Beatrix W. AlsaniusEmail author
  • Andrea Kosiba Held
  • Martine Dorais
  • Cecilia Moraa Onyango
  • Lars Mogren
Part of the Urban Agriculture book series (URBA)


Within sustainable production, produce quality and safety are essential features. However, methods, requirements, conditions and even legislation for produce quality and safety in production in rural areas cannot always be directly transferred to production in urban areas and on rooftops. This chapter describes features of produce quality, produce safety and safety hazards in urban rooftop farming employing various technological solutions and serving various purposes in different climate zones. Sustainability is discussed in terms of product quality and safety, and requirements to resolve the principal issues are presented.



This chapter was partly supported by the project “African urban agriculture : Environmental, social and economic challenges and prospects under changing global and demographic realities”, funded by the Swedish research council Formas, which is gratefully acknowledged.


  1. Abbate C, Borzi D, Caboni P, Baglieri A (2007) Behavior of fenhexamid in soil and water. J Environ Sci Health B 42(7):843–849. doi: 10.1080/03601230701555088 CrossRefPubMedGoogle Scholar
  2. Abbate C, Borzi D, Baglieri A, Gennari M (2009) Degradation of the fungicide pyrimethanil in water and soil. Agrochimica 53(6):1–7Google Scholar
  3. Alsanius BW (2014a) Hygien och bevattning (trans: Technology DoBa), vol 2014:10. Swedish University of Agricultural Sciences, AlnarpGoogle Scholar
  4. Alsanius BW (2014b) Mikrobiologiska faror i grönsakskedjan under primärproduktion, vol 2014:12. SLU, AlnarpGoogle Scholar
  5. Alsanius BW, Bergstrand K-J (2014) Degradation of pesticides in nutrient solution from closed hydroponic systems. Acta Hortic 1034(2014):33–40CrossRefGoogle Scholar
  6. Alsanius BW, Bergstrand K-J, Burleigh S, Gruyer N, Rosberg AK (2013) Persistence of fenhexamid in the nutrient solution of a closed cropping system. Agric Water Manag 127:25–30CrossRefGoogle Scholar
  7. Alsanius BW, M Dorais, O. Doyle, F. Oancea, D. Spaddaro (2016) Potential food hazards from organic greenhouse horticulture. BioGreenhouse Fact sheet 17:3. COST project FA 1105 “BioGreenhouse”. Wageningen.
  8. Anjum SA, Xie X-Y, Wang L-C, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032Google Scholar
  9. Antisari LV, Orsini F, Marchetti L, Vianello G, Gianquinto G (2015) Heavy metal accumulation in vegetables grown in urban gardens. Agron Sustain Dev 35(3):1139–1147CrossRefGoogle Scholar
  10. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543CrossRefPubMedGoogle Scholar
  11. Azapagic A, Chalabi Z, Fletcher T et al (2013) An integrated approach to assessing the environmental and health impacts of pollution in the urban environment: methodology and a case study. Process Saf Environ Prot 91(6):508–520. doi: 10.1016/j.psep.2012.11.004 CrossRefGoogle Scholar
  12. Barrett-Lennard EG (2003) The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253(1):35–54Google Scholar
  13. Berger CN, Sodha SV, Shaw RK et al (2010a) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12(9):2385–2397. doi: 10.1111/j.1462-2920.2010.02297.x CrossRefPubMedGoogle Scholar
  14. Beuchat LR (2006) Vectors and conditions for pre-harvest contamination of fruits and vegetables with pathogens capable of causing enteric diseases. Br Food J 108(1):38–53CrossRefGoogle Scholar
  15. Bihn EA, Gravani RB (2006) Role of good agricultural practices in fruit and vegetable safety. In: Matthews KR (ed) Microbiology of fresh produce. ASM Press, Washington, DC, pp 21–53CrossRefGoogle Scholar
  16. Binns HJ, Gray KA, Chen T et al (2004) Evaluation of landscape coverings to reduce soil lead hazards in urban residential yards: the safer yards project. Environ Res 96(2):127–138CrossRefPubMedGoogle Scholar
  17. Bollen GJ, Volker D (1996) Phytohygienic aspects of composting. In: Bartoldi M, Sequi P, Lemmes B, Papi T (eds) Science of composting. Blackie Academic and Professional, London, pp 233–246CrossRefGoogle Scholar
  18. Bourn D, Prescott J (2002) A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Rev in Food Sci Nutr 42(1):1–34CrossRefGoogle Scholar
  19. Briat J-F, Dubos C, Gaymard F (2014) Iron nutrition, biomass production, and plant product quality. Cell Press 20(1):33–40. doi: 10.1016/j.tplants.2014.07.005 Google Scholar
  20. Casati S, Conza L, Bruin J, Gaia V (2010) Compost facilities as a reservoir of Legionella pneumophila and other Legionella species. Clin Microbiol Infect 16:945–947. doi: 10.1111/j.1469-0691.2009.03009.x CrossRefPubMedGoogle Scholar
  21. CFSAN (1998) Guide to minimize microbial food safety hazards for fresh fruits and vegetables. In: http://wwwfoodsaftetygov/~acrobat/prodguidpdf. Accessed 27 Apr 2007
  22. Chen LQ, Fang L, Ling J, Ding CZ, Kang B, Huang CH (2015) Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol 28(3):501–509. doi: 10.1021/tx500479m CrossRefPubMedGoogle Scholar
  23. Codex Alimentarius (2007) Principles and guidelines for the conduct of microbiological risk management (MRM), vol CAC/GL 63-2007. FAO, Rome, pp 1–15Google Scholar
  24. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11. doi: 10.1186/1471-2229-11-163
  25. Darko RO, Yuan S, Hong L, Liu J, Yan H (2016) Irrigation, a productive tool for food security - a review. Acta Agric Scand Sect B Soil Plant Sci 66(3):191–206. doi: 10.1080/09064710.2015.1093654 Google Scholar
  26. De Pascale S, Martino A, Raimondi G, Maggio A (2007) Comparative analysis of water and salt stress-induced modifications of quality parameters in cherry tomatoes. J Hortic Sci Biotechnol 82:283–289CrossRefGoogle Scholar
  27. De Pascale S, Orsini F, Caputo R, Palermo MA, Barbieri G, Maggio A (2012) Seasonal and multiannual effects of salinisation on tomato yield and fruit quality. Funct Plant Biol 39:689–698CrossRefGoogle Scholar
  28. Dorais M, Alsanius BW (2015) Advances and trends in organic fruit and vegetable farming research. Hortic Rev 43:185–267Google Scholar
  29. Dorais M, Ehret DL (2008) Agronomy and the nutritional quality of fruit. In: Tomás-Barberán FA, Gil MI (eds) Improving the health-promoting properties of fruit and vegetable products, 1st edn. Woodhead Publishing, Cambridge, pp 346–391CrossRefGoogle Scholar
  30. Dorais M, Papadopoulos AP, Gosselin A (2001) Influence of EC management on greenhouse tomato yield and fruit quality. Agronomie 21:367–384CrossRefGoogle Scholar
  31. Dorais M, Alsanius BW, Voogt W, Pépin S, Tüzel H, Tüzel Y, Möller K (2016) Impact of water quality and irrigation management on organic greenhouse horticulture. Wageningen, 98 pages. ISBN: 978-94-6257-538-7. doi:10.18174/373585Google Scholar
  32. Eigenbrod C, Gruda N (2015) Urban vegetable for food security in cities. Agron Sustain Dev 35:483–498CrossRefGoogle Scholar
  33. European Parliament, European Council (2009a) Establishing a framework for community action to achieve the sustainable use of pesticides. Off J Eur Union 52:71–87Google Scholar
  34. European Parliament, European Council (2009b) Legislation concerning the placing of plant protection products on the market and repealing council directives 79/117/EEC and 91/414/EEC. Off J Eur Union 52(309):1–50Google Scholar
  35. European Union (1991) Council directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). In: European Council (ed) Official journal of the European communities, vol L 375. European Union, Brussels, p 8Google Scholar
  36. FAO (2003) Development of a framework for good agricultural practices. In: Committee on Agriculture (ed). FAO, Rome, p 10Google Scholar
  37. FAO/WHO (2006) Food safety risk analysis A guide for national food safety authorities. In: FAO/WHO (ed). FAO/WHO, RomeGoogle Scholar
  38. FAO/WHO (2014) Codex Alimentarius: principles and guidelines for the conduct of microbiological risk assessment. In: Codex Alimentarius (ed) CAC/GL 30-1999. FAO/WHO, Rome, pp 1–5Google Scholar
  39. Fett W (2006) Seed sprouts: the state of microbiological safety. In: Matthews KR (ed) Microbiology of fresh produce. Emerging issues in food safety. ASM, Washington, DC, pp 167–220CrossRefGoogle Scholar
  40. Franke-Whittle I, Insam H (2013) Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: a review. Crit Rev Microbiol 39(2):139–151. doi: 10.3109/1040841X.2012.694410 CrossRefPubMedGoogle Scholar
  41. Gallaher CM, Mwaniki D, Njenga M, Karanja NK, Winkler Prins AM (2013) Real or perceived: the environmental health risks of urban sack gardening in Kibera slums of Nairobi, Kenya. EcoHealth 10(1):9–20. doi: 10.1007/s10393-013-0827-5 CrossRefPubMedGoogle Scholar
  42. Gerba CP (2009) The role of water and water testing in produce safety. In: Fan BA, Niemira CJ, Doona FE, Feeherry, Gravani RB (eds) Microbial safety of fresh produce. X. IFT Press/Wiley-Blackwell, Ames, pp 129–142. ISBN: 978-0-8138-0416-3Google Scholar
  43. Gröndalen J, Saevik B, Sörum H (2008) Companion animals as reservoir for zoonotic diseases. Eur J Campanion Anim Pract 18(3):213–222Google Scholar
  44. Gruda N (2005) Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit Rev Plant Sci 24(3):227–247. doi: 10.1080/07352680591008628 CrossRefGoogle Scholar
  45. Grunert KG (2005) Food quality and safety: consumer perception and demand. Eur Rev Agric Econ 32(3):369–390. doi: 10.1093/eurrag/jbi011 CrossRefGoogle Scholar
  46. Heddema ER, ter Sluis S, Buys JA, Vandenbroucke-Grauls CMJE, van Wijnen JH, Visser CE (2005) Prevalence of Chlamydophila psittaci in fecal droppings from feral pigeons in Amsterdam, The Netherlands. Appl Environ Microbiol 72:4423–4425CrossRefGoogle Scholar
  47. Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17(8):2142–2155. doi: 10.1105/tpc.105.032508 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Herklotz PA, Gurung P, Vanden Heuvel B, Kinney CA (2010) Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 78:1416–1421CrossRefPubMedGoogle Scholar
  49. Imrich A, Ning YY, Kobzik L (2000) Insoluble components of concentrated air particles mediate alveolar macrophage responses in vitro. Toxicol Appl Pharmacol 167(2):140–150CrossRefPubMedGoogle Scholar
  50. Iwasa M, Makino S, Asakura H, Kobori H, Morimoto Y (1999) Detection of Escherichia coli O157:H7 from Musca domestica (Diptera: Muscidae) at a cattle farm in Japan. J Med Entomol 36:108–112CrossRefPubMedGoogle Scholar
  51. Jayawardena U, Tollemark L, Tagesson C, Leanderson P (2009) Pyrogenic effect of respirable road dust particles. J Phys Conf Ser 151(012015):1–9. doi: 10.1088/1742-6596/151/1/012015 Google Scholar
  52. Karnjanapiboonwong A, Chase DA, Cañas JE et al (2011) Uptake of 17a-ethynylestradiol and triclosan in pinto bean, Phaseolus vulgaris. Ecotoxicol Environ Saf 74:1336–1342CrossRefPubMedGoogle Scholar
  53. Kim HS, Kim R-K, Lim G-H, Kim J-W, Kim K-H (2015) Influence of airborne dust on the metal concentrations in crop plants cultivated in a rooftop garden in Seoul. Soil Sci Plant Nutr 61:1–10. doi: 10.1080/00380768.2015.1028873 Google Scholar
  54. Kreuger J, Graaf S, Patring J, Adielsson S (2010) Pesticides in surface water in areas with open ground and greenhouse horticultural crops in Sweden 2008 Ekohydrologi, vol 117. Division of Water Quality Management, Uppsala, p 49Google Scholar
  55. Lagerkvist CJ, Ngigi M, Okello JJ, Karanja N (2012) Means-end chain approach to understanding farmers’ motivations for pesticide use in leafy vegetables: the case of kale in peri-urban Nairobi, Kenya. Crop Prot 39:72–80. doi: 10.1016/j.cropro.2012.03.018 CrossRefGoogle Scholar
  56. Lohrberg F, Licka L, Scazzosi L, Timpe A (2015) Urban agriculture Europe. JOVIS, BerlinGoogle Scholar
  57. Lovarelli D, Bacenetti J, Fiala M (2016) Water footprint of crop productions: a review. Sci Total Environ 548:236–251. doi: 10.1016/j.scitotenv.2016.01.022 CrossRefPubMedGoogle Scholar
  58. Maghos F, Fotini A, Aampelas A (2006) Organic food: buying more safety or just peace of mind? A critical review of the literature. Crit Rev Food Sci Nutr 46:23–56CrossRefGoogle Scholar
  59. Martin-Diana AB, Rico D, Frias JM, Barat JM, Henehan GTM, Barry-Ryan C (2007) Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: a review. Trends Food Sci Technol 18(4):210–218. doi: 10.1016/j.tifs.2006.11.027 CrossRefGoogle Scholar
  60. Matthews KR, Sapers GM, Gerba CP (2014) The produce contamination problem, 2nd edn. Academic, AmsterdamGoogle Scholar
  61. Mattsson K, Ekvall MT, Hansson A, Linse S, Malmendal A, Cedervall T (2015) Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ Sci Technol 49(1):553–561CrossRefPubMedGoogle Scholar
  62. Möller K, Schultheiss U (2014) Organische Handelsdüngemittel im ökologischen Landbau, vol 499. KTBL, DarmstadtGoogle Scholar
  63. Monaghan JM, Hutchinson ML (2012) Distribution and decline of human pathogenic bacteria in soil after application in irrigation water and the potential for soil-splash-mediated dispersal onto fresh produce. J Appl Microbiol 112:1007–1019. doi: 10.1111/j.1365-2672.2012.05269.x CrossRefPubMedGoogle Scholar
  64. Mutuku MS (2013) Lead, cadmium and zinc speciation in garage soils, their levels in kales and water along Katothyani stream. Kenyatta University, MachakosGoogle Scholar
  65. Naser HM, Sultana S, Mahmud NU, Gomes R, Noor S (2012) Heavy metal levels in vegetables with growth stage and plant species variations. Bangladesh. J Agric Res 36(4):563–574. doi: Google Scholar
  66. National Research Council (NCR) (2010) Toward sustainable agricultural systems in the 21st century. National Academies Press, Washington, DCGoogle Scholar
  67. Ngowi AV, Mbise FTJ, Ijani ASM, London L, Ajayi OC (2007) Smallholder vegetable farmers in northern Tanzania: pesticides use practices, perceptions, cost and health effects. Crop Prot 26(11):1617–1624CrossRefPubMedPubMedCentralGoogle Scholar
  68. Nielsen EM, Skov MN, Madsen JJ, Lodal J, Jespersen JB, Baggesen DL (2004) Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms. Appl Environ Microbiol 70(11):6944–6947. doi: 10.1128/AEM.70.11.6944-6947.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Onyango MC, Shibairo SI, Imungi JK, Harbinson J (2008) The physico-chemical characteristics and some nutritional values of vegetable amaranth sold in Nairobi-Kenya. Ecol Food Nutr 37(4):382–398CrossRefGoogle Scholar
  70. Orsini F, Maggio A, Rouphael Y, De Pascale S (2016) Physiological quality of organically grown vegetables. Sci Hortic 208:131–139CrossRefGoogle Scholar
  71. Park S, Cheng NH, Pittman JK et al (2005) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca-2 transporters. Plant Physiol 139(3):1194–1206. doi: 10.1104/pp.105.066266 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Pimentel D, Berger B, Filiberto D et al (2004) Water resources: agricultural and environmental issues. Bioscience 54(10):909–918CrossRefGoogle Scholar
  73. Redshaw CH, Wootton WG, Rowland SJ (2008) Uptake of the pharmaceutical fluoxetine hydrochloride from growth medium by Brassicaceae. Phytochemistry 69:2510–2516CrossRefPubMedGoogle Scholar
  74. Ripoll J, Urban L, Staudt M, Lopez-Lauri F, Bidel LPR, Bertin N (2014) Water shortage and quality of fleshy fruits-making the most of the unavoidable. J Exp Bot 65(15):4097–4117. doi: 10.1093/jxb/eru197 CrossRefPubMedGoogle Scholar
  75. Rouphael Y, Cardarelli M, Bassal A, Leonardi C, Giuffrida F, Colla G (2012) Vegetable quality as affected by genetic, agronomic and environmental factors. J Food Agric Environ 10(3–4):680–688Google Scholar
  76. Salonen RO, Hälinen AI, Penanen AS et al (2004) Chemical and in vitro toxicologic characterization of wintertime and springtime urban-air particles with an aerodynamic diameter below 10 microm in Helsinki. Scand J Work Environ Health 30:80–90PubMedGoogle Scholar
  77. Säumel I, Kotsyuk I, Hölscher M, Lenkereit C, Weber F, Kowarik I (2012) How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ Pollut 165:124–132CrossRefPubMedGoogle Scholar
  78. Schaufler K, Bethe A, Lübke-Becker A et al (2015) Putative connection between zoonotic multiresistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in dog feces from a veterinary campus and clinical isolates from dogs. Infect Ecol Epidemiol 5:25334CrossRefPubMedGoogle Scholar
  79. Sela S, Nestel D, Pinto R, Nemny-Lavy E, Bar-Joseph M (2005) Mediterranean fruit fly as a potential vector of bacterial pathogens. Appl Environ Microbiol 71:4052–4056CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shahid U, Muhammad I (2007) Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron Sustain Dev 27(1):47–57Google Scholar
  81. Shenker M, Harush D, Ben-Ari J, Chefetz B (2011) Uptake of carbamazepine by cucumber plants – a case study related to irrigation with reclaimed wastewater. Chemosphere 82:905–910CrossRefPubMedGoogle Scholar
  82. Steele TW, Lanser J, Sangster N (1990) Isolation of Legionella longbeachae serogroup 1 from potting mixes. Appl Environ Microbiol 56(1):49–53PubMedPubMedCentralGoogle Scholar
  83. Talley JL, Wayadande AC, Wasala LP et al (2009) Association of Escherichia coli O157:H7 with filth flies (Muscidae and Calliphoridae) captured in leafy greens fields and experimental transmission of E. coli O157:H7 to spinach leaves by house flies (Diptera: Muscidae). J Food Prot 72:1547–1552CrossRefPubMedGoogle Scholar
  84. Tauxe R, Kruse H, Hedberg C, Potter M, Madden J, Wachsmuth K (1997) Microbial hazards and emerging issues associated with produce: a preliminary report to the National Advisory Committee on microbiologic criteria for foods. J Food Prot 60(11):1400–1408CrossRefGoogle Scholar
  85. Udikovic-Kolic N, Wiechmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci 111(42):15202–15207. doi: 10.1073/pnas.1409836111 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37(2):155–182. doi: 10.1016/s1352-2310(02)00857-9 CrossRefGoogle Scholar
  87. Wallace JS, Cheasty T, Jones K (1997) Isolation of vero cytotoxin-producing Escherichia coli O157 from wild birds. J Appl Microbiol 82:399–404CrossRefPubMedGoogle Scholar
  88. Warriner K, Smal B (2015) Microbiological safety of sprouted seeds: interventions and regulations. In: Matthews KR, Sapers GM, Gerba CP (eds) The produce contamination problem: causes and solutions, Food Science and Technology, International Series, 2nd edn. Elsevier/Academic, Amsterdam, pp 237–268Google Scholar
  89. Whittinghill LJ, Rowe DB, Cregg BM (2013) Evaluation of vegetable production on extensive green roofs. Agroecology Sustain Food Syst 37(4):465–484. doi: 10.1080/21683565.2012.756847 CrossRefGoogle Scholar
  90. Winker M, Clemens J, Reich M, Gulyas H, Otterpohl R (2010) Ryegrass uptake of carbamazepine and ibuprofen applied by urine fertilization. Sci Total Environ 408:1902–1908CrossRefPubMedGoogle Scholar
  91. Winter CK, Davis SF (2006) Organic foods. Scientific status review. J Food Sci 7(9):R117–R124CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Beatrix W. Alsanius
    • 1
    Email author
  • Andrea Kosiba Held
    • 1
  • Martine Dorais
    • 2
  • Cecilia Moraa Onyango
    • 3
  • Lars Mogren
    • 1
  1. 1.Department of Biosystems and Technology, Microbial Horticulture UnitSwedish University of Agricultural SciencesAlnarpSweden
  2. 2.Pacific Agri-Food Research CentreAgriculture and Agri-Food CanadaAgassizCanada
  3. 3.Department of Plant Science and Crop protectionUniversity of NairobiNairobiKenya

Personalised recommendations