Skip to main content

Sustainable Pest Management

  • Chapter
  • First Online:
Rooftop Urban Agriculture

Part of the book series: Urban Agriculture ((URBA))

  • 4242 Accesses

Abstract

This section addresses the application of an ecosystemic approach in pest control issues in rooftop agriculture. Biotope (e.g., physical and climatic characteristics), possible biocenosis (e.g., insect pests, plant diseases, beneficials) and related ecological relationships are described, altogether with their practical consequences.

Taken for granted that under the rooftop conditions the use of synthetic and broad spectrum pesticides is unwise, the main ecological IPM practices potentially pertinent to rooftop agriculture are described. Pest exclusion and prevention practices, biological control with beneficial arthropods, use of natural and botanical insecticides, habitat manipulation and use of functional biodiversity for pest control are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerson NO, Awuah E (2010) Urban agriculture practices and health problems among farmers operating on a university campus in Kumasi, Ghana. Field actions science reports. J Field Actions (Special Issue 1)

    Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184(3):529–544

    Article  CAS  PubMed  Google Scholar 

  • Alarcon WA, Calvert GM, Blondell JM, Mehler LN, Sievert J, Propeck M, Tibbetts DS, Becker A, Lackovic M, Soileau SB, Das R, Beckman J, Male DP, Thomsen CL, Stanbury M (2005) Acute illnesses associated with pesticide exposure at schools. JAMA 294(4):455–465

    Article  CAS  PubMed  Google Scholar 

  • Altieri MA (1987) Agroecology: the scientific basis of alternative agriculture. Westview Press, Boulder

    Google Scholar 

  • Anderson RL, McMullen MP, Peairs FB (1996) Integrated pest management of insects, plant pathogens, and weeds in dryland cropping systems of the Great Plains. J Prod Agric 9(2):200–208

    Article  Google Scholar 

  • Audenaert JA, Vangansbeke D, Verhoeven R, De Clercq P, Tirry L, Gobin B (2014). Variability in greenhouse temperature and humidity affects predation efficiency of Phytoseiulus persimilis and Neoseiulus californicus on Tetranychus urticae. IOBCWPRS Bull: submitted

    Google Scholar 

  • Badgery-Parker J (2015) Keep it CLEAN: reducing costs and losses in the management of pests and diseases in the greenhouse. NSW Department of Primary Industries, Gosford

    Google Scholar 

  • Barbedo JGA (2016) A review on the main challenges in automatic plant disease identification based on visible range images. Biosyst Eng 144:52–60

    Article  Google Scholar 

  • Barber NA, Kiers ET, Theis N, Hazzard RV, Adler LS (2013) Linking agricultural practices, mycorrhizal fungi, and traits mediating plant–insect interactions. Ecol Appl 23(7):1519–1530

    Article  PubMed  Google Scholar 

  • Baudoin W, Nono-Womdim R, Lutaladio N, Hodder A, Castilla N, Leonardi C, De Pascale S, Qaryouti M, Duffy R (2013) Good agricultural practices for greenhouse vegetable crops: principles for Mediterranean climate areas. FAO plant production and protection paper (FAO)

    Google Scholar 

  • Bazzocchi G (2013) Organic pest control in the vegetable garden. In: Orsini et al (eds) Sustainable urban garden management. Horticity Bologna: 54–64. Hortis LLP EU program: http://www.hortis-europe.net/files/documenti/inglese/final-e-books/web-e-book-2-engl-last.pdf. Last Accessed 24 Oct 2016

  • Bazzocchi G, Burgio G (2000) Functional response of Lisiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae) against Aphis gossypii Glover (Homoptera: Aphididae) at two constant temperatures. Boll Ist Ent G Grandi Univ Bologna 54:13–21

    Google Scholar 

  • Bazzocchi G, Pennisi G, Frabetti A, Orsini F, Gianquinto G (in press) Abundance, migration and distribution of Coccinella septempunctata (Coleoptera: Coccinellidae) in a highly biodiverse urban garden. Acta Horticolturae

    Google Scholar 

  • Bennett AB, Lovell ST (2014) A comparison of arthropod abundance and arthropod mediated predation services in urban green spaces. Insect Conserv Divers 7(5):405–412

    Article  Google Scholar 

  • Bentley JW (1992) Alternatives to pesticides in central America: applied studies of local knowledge. Cult Agric 12(44):10–13

    Article  Google Scholar 

  • Berryman AA (1992) The origins and evolution of predator-prey theory. Ecology 73(5):1530–1535

    Article  Google Scholar 

  • Braham M, Nefzaouil F (2016) Study of the effectiveness of two methods: mass trapping and leaf and frits removal for the control of the tomato leafminer, Tuta absoluta Meyrick (Lepidoptera, Gelechiidae) in Tunisia. J Glob Agric Ecol 4(3):114–122

    Google Scholar 

  • Burns CJ, McIntosh LJ, Mink PJ, Jurek AM, Li AA (2013) Pesticide exposure and neurodevelopmental outcomes: review of the epidemiologic and animal studies. J Toxicol Environ Health Part B 16(3–4):127–283

    Article  CAS  Google Scholar 

  • Castellano S, Mugnozza GS, Russo G, Briassoulis D, Mistriotis A, Hemming S, Waaijenberg D (2008) Plastic nets in agriculture: a general review of types and applications. Appl Eng Agric 24(6):799–808

    Article  Google Scholar 

  • CDPH (2014) Agricultural pesticide use near public schools in California, April 2014. California Department of Public Health, California Environmental Health Tracking Program

    Google Scholar 

  • Celli G, Radeghieri P, Bazzocchi G (eds) (2001) Agroecology: toward a new agriculture for Europe. Brussels, GREEN/EFA

    Google Scholar 

  • Cloyd RA (2016) Greenhouse pest management, Contemporary topics in entomology series. CRC Press, Boca Raton

    Book  Google Scholar 

  • Cocco A, Deliperi S, Delrio G (2012) Potential of mass trapping for Tuta absoluta management in greenhouse tomato crops using light and pheromone traps. IOBC-WPRS Bulletin 80:319–324

    Google Scholar 

  • Colley MR, Luna JM (2000) Relative attractiveness of potential beneficial insectary plants to aphidophagous hoverflies (Diptera: Syrphidae). Environ Entomol 29(5):1054–1059

    Article  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31(1):53–80

    Article  CAS  PubMed  Google Scholar 

  • De Grazio JW (1978) World bird damage problems. In: Proceedings of the 8th vertebrate Pest control conference, Davis, pp 9–24

    Google Scholar 

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed AM, Suckling DM, Wearing CH, Byers JA (2006) Potential of mass trapping for long-term pest management and eradication of invasive species. J Econ Entomol 99(5):1550–1564

    Article  CAS  PubMed  Google Scholar 

  • European Parliament, European Council (2009) Establishing a framework for community action to achieve the sustainable use of pesticides. Off J Eur Union L309(52):71–87. doi:10.3000/17252555.L_2009.309.eng

    Google Scholar 

  • FAO (2007) Profitability and sustainability of urban and peri-urban agriculture. Agricultural management, marketing and finance occasional paper No. 19 United Nations Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (2012) Growing greener cities in Africa: first status report on urban and Peri-urban horticulture in Africa United Nations Food and Agriculture Organization, Rome

    Google Scholar 

  • Frank SD (2010) Biological control of arthropod pests using banker plant systems: past progress and future directions. Biol Control 52(1):8–16

    Article  Google Scholar 

  • Furness RW, Monaghan P (1987) Seabirds as pests. In: Furness (ed) Seabird ecology. Springer, New York, pp 127–138

    Chapter  Google Scholar 

  • Gahukar RT (2014) Factors affecting content and bioefficacy of neem (Azadirachta indica A. Juss.) phytochemicals used in agricultural pest control: a review. Crop Prot 62:93–99

    Article  CAS  Google Scholar 

  • Gamliel A, Katan J (eds) (2012) Soil solarization: theory and practice. American Phytopathological Society, St. Paul

    Google Scholar 

  • Gliessman SR (2006) Agroecology: the ecology of sustainable food systems. CRC Press, New York

    Google Scholar 

  • Gogo EO, Saidi M, Itulya FM, Martin T, Ngouajio M (2014) Eco-friendly nets and floating row covers reduce pest infestation and improve tomato (Solanum lycopersicum L.) yields for smallholder farmers in Kenya. Agronomy 4(1):1–12

    Article  Google Scholar 

  • Gonzalez F, Tkaczuk C, Dinu MM, Fiedler Å», Vidal S, Zchori-Fein E, Messelink GJ (2016) New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J Pest Sci 89(2):295–311

    Article  Google Scholar 

  • Grondeau C, Samson R, Sands DC (1994) A review of thermotherapy to free plant materials from pathogens, especially seeds from bacteria. Crit Rev Plant Sci 13(1):57–75

    Article  Google Scholar 

  • Grunert KG (2005) Food quality and safety: consumer perception and demand. Eur Rev Agric Econ 32(3):369–390. doi:10.1093/eurrag/jbi011

    Article  Google Scholar 

  • Grzywacz D, Stevenson PC, Mushobozi WL, Belmain S, Wilson K (2014) The use of indigenous ecological resources for pest control in Africa. Food Sec 6(1):71–86

    Article  Google Scholar 

  • Gumus A, Karagoz M, Shapiro-Ilan D, Hazir S (2015) A novel approach to biocontrol: release of live insect hosts pre-infected with entomopathogenic nematodes. J Invertebr Pathol 130:56–60

    Article  PubMed  Google Scholar 

  • Gurr GM, Wratten SD, Snyder WE (eds) (2012) Biodiversity and insect pests: key issues for sustainable management. Wiley, Oxford

    Google Scholar 

  • Hanafi A, Papasolomontos A (1999) Integrated production and protection under protected cultivation in the Mediterranean region. Biotechnol Adv 17(2):183–203

    Article  CAS  PubMed  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396(6706):41–49

    Article  CAS  Google Scholar 

  • Hochmuth RC, Sprenkel RK (2008) Exclusion methods for managing greenhouse vegetable pests. ENY-846 (IN730), Florida cooperative extension service, Institute of Food and Agricultural Sciences, University of Florida. Available at: http://edis.Ifas.Ufl.Edu/in730. Last Accessed 25 Oct 2016

  • Hogendorp BK, Cloyd RA (2006) Insect Management in Floriculture: how important is sanitation in avoiding insect problems? HortTechnology 16(4):633–636

    Google Scholar 

  • Horowitz M, Roger Y, Herlinger G (1983) Solarization for weed control. Weed Sci 31:170–179

    Google Scholar 

  • Hughes DP, Salathé M (2015) An open access repository of images on plant health to enable the development of mobile disease diagnostics. CoRR abs/1511.08060, 1

    Google Scholar 

  • Ives AR, Settle WH (1997) Metapopulation dynamics and pest control in agricultural systems. Am Nat 149(2):220–246

    Article  Google Scholar 

  • Jarvis WR (1992) Managing diseases in greenhouse crops. APS Press, St. Paul

    Google Scholar 

  • Kadas G (2006) Rare invertebrates colonizing green roofs in London. Urban habitats 4(1):66–86

    Google Scholar 

  • Khirade SD, Patil AB (2015) Plant disease detection using image processing. In: International conference on computing communication control and automation (ICCUBEA), 2015 IEEE

    Google Scholar 

  • King SR, Davis AR, Liu W, Levi A (2008) Grafting for disease resistance. Hortscience 43(6):1673–1676

    Google Scholar 

  • Kosterna E (2014) The effect of different types of straw mulches on weed-control in vegetables cultivation. J Ecol Eng 15(4):109–117

    Google Scholar 

  • Kozlova I, Singh M, Easton A, Ridland P (2005) Twospotted spider mite predator-prey model. Math Comput Model 42(11):1287–1298

    Article  Google Scholar 

  • Kumar V, Xiao Y, McKenzie CL, Osborne LS (2015) Early establishment of the phytoseiid mite Amblyseius swirskii (Acari: Phytoseiidae) on pepper seedlings in a predator-in-first approach. Exp Appl Acarol 65(4):465–481

    Article  PubMed  Google Scholar 

  • Lal C, Verma LR (2006) Use of certain bio-products for insect-pest control. Indian J Tradit Knowl 5(1):79–82

    Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45(1):175–201

    Article  CAS  PubMed  Google Scholar 

  • Lenteren van JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57(1):1–20

    Article  Google Scholar 

  • Lenteren van JC, Woets JV (1988) Biological and integrated pest control in greenhouses. Annu Rev Entomol 33(1):239–269

    Article  Google Scholar 

  • Lenteren van JC, Benuzzi M, Nicoli G, Maini S (1992) Biological control in protected crops in Europe. In: van Lenteren JC et al (eds) Biological control and integrated crop protection: towards environmentally safer agriculture. Wageningen, Veldhoven, pp 77–89

    Google Scholar 

  • Licciardi S, Assogba-Komlan F, Sidick I, Chandre F, Hougard JM, Martin T (2007) A temporary tunnel screen as an eco-friendly method for small-scale farmers to protect cabbage crops in Benin. Intl J Trop Insect Sci 27:152–158

    Article  Google Scholar 

  • MacIvor JS, Lundholm J (2011) Insect species composition and diversity on intensive green roofs and adjacent level-ground habitats. Urban Ecosyst 14(2):225–241

    Article  Google Scholar 

  • Maini S, Nicoli G (1990) La serra come ecosistema. Le Scienze quaderni 53:37–43

    Google Scholar 

  • Makris SL, Rowe JN (1998) Implementation of the food quality protection act (FQPA) as it relates to enhanced sensitivity of children. Teratology 57(4/5):246

    Google Scholar 

  • Markkula M, Tiittanen K (1976) Pest in first and natural infestation methods in the control of Tetranychus urticae Koch with Phytoseiulus persimilis Athias-Henriot on greenhouse cucumbers. Annales Agriculturae Fenniae 15:81–85

    Google Scholar 

  • Martin T, Assogba-Komlan F, Houndete T, Hougard JM, Chandre F (2006) Efficacy of mosquito netting for sustainable small holder’s cabbage production in Africa. J Econ Entomol 99(2):450–454

    Article  CAS  PubMed  Google Scholar 

  • Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl, 59(4):377-393

    Google Scholar 

  • Mills NJ, Getz WM (1996) Modelling the biological control of insect pests: a review of host-parasitoid models. Ecol Model 92(2):121–143

    Article  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Nasterlack M (2006) Do pesticides cause childhood cancer? Int Arch Occup Environ Health 79(7):536–544

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (NCR) (2010) Toward sustainable agricultural systems in the 21st century. National Academies Press, Washington

    Google Scholar 

  • Nega E, Ulrich R, Werner S, Jahn M (2003) Hot water treatment of vegetable seed–an alternative seed treatment method to control seed borne pathogens in organic farming. J Plant Dis Prot 110(3):220–234

    Google Scholar 

  • Nono-Womdim R (2003) An overview of major virus diseases of vegetable crops in Africa and some aspects of their control. In: Plant virology in sub-Saharan Africa, proceedings conference organized by IITA. International Institute of Tropical Agriculture, Ibadan, pp 213–232

    Google Scholar 

  • Nono-Womdim R, Marchoux G, Pochard E, Palloix A, Gebre-Selassie K (1991) Resistance of pepper lines to the movement of cucumber mosaic virus. J Phytopathol 132(1):21–32

    Article  Google Scholar 

  • Olkowski W, Daar S, Olkowski H (1991) Common sense – pest control. The Taunton Press, Newtown

    Google Scholar 

  • Orsini F, Marchetti L, Magrefi F, Draghetti S Bazzocchi G (2013) Sustainable urban garden management. Horticity, Bologna. Hortis LLP EU program. http://www.hortis-europe.net/files/documenti/inglese/final-e-books/web-e-book-2-engl-last.pdf. Last Accessed 25 Oct 2016

  • Orsini F, Gasperi D, Marchetti L, Piovene C, Draghetti S, Ramazzotti S, Bazzocchi G, Gianquinto G (2014) Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: the potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Sec 6(6):781–792

    Article  Google Scholar 

  • Osborne LS, Landa Z, Taylor DJ, Tyson RV (2005) Using banker plants to control insects in greenhouse vegetables. Proc Florida State Hortic Soc 118:127–128

    Google Scholar 

  • Paret M, Pernezny K, Roberts P (2013) Disease control for Florida tomatoes. University of Florida. Cooperative Ext Serv Tech Bull EDIS PPP35. http://edis.Ifas.ufl.edu/vh056. Last Accessed 25 Oct 2016

  • Pfeiffer A, Silva E, Colquhoun J (2015) Living mulch cover crops for weed control in small-scale applications. Renewable Agric Food Syst 1(4):1–9

    Google Scholar 

  • Posnette AF, Cropley R (1958) Heat treatment for the inactivation of strawberry viruses. J Hortic Sci 33(4):282–288

    Article  Google Scholar 

  • Racke KD, Leslie AR (1993) Pesticides in urban environments, ACS Symposium Series. Washington, DC, American Chemical Society

    Book  Google Scholar 

  • Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, Whyatt R (2015) Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. In: Everyday environmental toxins: children’s exposure risks. Boca Raton, CRC Press

    Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Chang Hum Health 2(2):90–104

    Article  Google Scholar 

  • Rotem J, Palti J (1969) Irrigation and plant diseases. Annu Rev Phytopathol 7(1):267–288

    Article  CAS  Google Scholar 

  • Rumei X (1991) Improvements of the plant-pest-parasitoid (PPP) model and its application on whiteily-Encarsia population dynamics under different release methods. J Appl Entomol 112(1–5):274–287

    Article  Google Scholar 

  • Russell GE (2013) Plant breeding for pest and disease resistance: studies in the agricultural and food sciences. Butterworth-Heinemann

    Google Scholar 

  • Sabelis MW, Diekmann O, Jansen VAA (1991) Metapopulation persistence despite local extinction: predator-prey patch models of the Lotka-Volterra type. Biol J Linn Soc 42(1–2):267–283

    Article  Google Scholar 

  • Sampson C, Kirk WD (2013) Can mass trapping reduce thrips damage and is it economically viable? Management of the western flower thrips in strawberry. PLoS One 8(11):e80787

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobhy IS, Erb M, Lou Y, Turlings TC (2014) The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philos Trans R Soc B Biol Sci 369(1639):20120283

    Article  Google Scholar 

  • Stapleton JJ (2008) Soil Solarization informational web site. UC statewide IPM program; Pest notes publication 74145, Kearney agricultural center, Parlier, CA. http://ucanr.edu/sites/Solarization/files/114635.pdf. Last Accessed 26 Oct 2016

  • Stapleton JJ, DeVay JE (1986) Soil solarization: a non-chemical approach for management of plant pathogens and pests. Crop Prot 5(3):190–198

    Article  Google Scholar 

  • Steck A, Morgan S, Retzlaff W, Williams J (2015) Insect communities on green roofs that are close in proximity but vary in age and plant coverage. J Living Archit 2(1):1–11

    Google Scholar 

  • Stenseth C (1979) Effect of temperature and humidity on the development of Phytoseiulus Persimilis and its ability to regulate populations of Tetranychus urticae [Acarina: Phytoseiidae. Tetranychidae]. Entomophaga 24(3):311–317

    Article  Google Scholar 

  • Stoll G (1996) Natural crop protection in the tropics. Margraf Verlag, Weikersheim

    Google Scholar 

  • Strobel NE, Kucf JA (1999) Plant resistance to pathogens. Handb Pest Manag 175

    Google Scholar 

  • Stuart RJ, Barbercheck ME, Grewal PS (2015) Entomopathogenic nematodes in the soil environment: distributions, interactions and the influence of biotic and abiotic factors. In: Nematode pathogenesis of insects and other pests. Springer International Publishing, Cham, pp 97–137

    Chapter  Google Scholar 

  • Suckling DM, Stringer LD, Kean JM, Lo PL, Bell V, Walker JT, Twidle AM, Jiménez-Pérez A, El-Sayed AM (2015) Spatial analysis of mass trapping: how close is close enough? Pest Manag Sci 71(10):1452–1461

    Article  CAS  PubMed  Google Scholar 

  • Tavares J, Wang KH, Hooks CR (2015) An evaluation of insectary plants for management of insect pests in a hydroponic cropping system. Biol Control 91:1–9

    Article  Google Scholar 

  • Teasdale JR (1996) Contribution of cover crops to weed management in sustainable agricultural systems. J Prod Agric 9(4):475–479

    Article  Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem 2013(2):1–10

    Article  Google Scholar 

  • Thompson JP (1991) Improving the mycorrhizal condition of the soil through cultural practices and effects on growth and phosphorus uptake by plants. In: Johansen C, Lee KK, Sahrawat KL (eds) Phosphorus nutrition of grain legumes in the semi-arid tropics. ICRISAT, Patancheru, pp 117–137

    Google Scholar 

  • Timm RM, Marsh RE (1997) Vertebrate Pests. In: Mallis handbook of pest control, 8th edn. Mallis Handbook and Technical Training Company, Cleveland

    Google Scholar 

  • Tonti S (2013) Disease management in the vegetable garden. In: Orsini et al (eds) Sustainable urban garden management. Horticity Bologna, pp 54–64. Hortis LLP EU program: http://www.hortis-europe.net/files/documenti/inglese/final-e-books/web-e-book-2-engl-last.pdf. Last Accessed 26 Oct 2016

  • Trevors JT (1996) Sterilization and inhibition of microbial activity in soil. J Microbiol Methods 26(1):53–59

    Article  CAS  Google Scholar 

  • Valcke M et al (2004) Characterization of exposure to pesticides used in average residential homes with children ages 3 to 7 in Quebec. National Institute of Public Health, Québec

    Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley BH, Pell JK, Rangell DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2(4):149–159

    Article  Google Scholar 

  • Vidogbéna F, Adégbidi A, Tossou R, Assogba-Komlan F, Ngouajio M, Martin T, Simon S, Parrot L, Zander KK (2015) Control of vegetable pests in Benin–Farmers’ preferences for eco-friendly nets as an alternative to insecticides. J Environ Manag 147:95–107

    Article  Google Scholar 

  • Volterra V (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem Accad Lincei II 6:31–112

    Google Scholar 

  • Wäckers FL, Romeis J, van Rijn P (2007) Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu Rev Entomol 52:301–323

    Article  PubMed  Google Scholar 

  • Wesseling C, McConnell R, Partanen T, Hogstedt C (1997) Agricultural pesticide use in developing countries: health effects and research needs. Int J Health Serv 27(2):273–308

    Article  CAS  PubMed  Google Scholar 

  • Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C (2009) Agroecology as a science, a movement and a practice. Rev Agron Sustain Dev 29(4):503–515

    Article  Google Scholar 

  • World Bank (2008) World development report 2008: agriculture for development. The World Bank, Washington

    Google Scholar 

  • Wraight SP, Ugine TA, Ramos ME, Sanderson JP (2016) Efficacy of spray applications of entomopathogenic fungi against western flower thrips infesting greenhouse impatiens under variable moisture conditions. Biol Control 97:31–47

    Article  Google Scholar 

  • Xia C, Chon TS, Ren Z, Lee JM (2015) Automatic identification and counting of small size pests in greenhouse conditions with low computational cost. Eco Inform 29:139–146

    Article  Google Scholar 

  • Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron Sustain Dev 35(2):569–588

    Article  CAS  Google Scholar 

  • Yang RZ, Tang CS (1988) Plants used for pest control in China: a literature review. Econ Bot 42(3):376–406

    Article  Google Scholar 

  • Zitter TA (2013) Vegetable crops. Department of Plant Pathology, Cornell University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Bazzocchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bazzocchi, G., Maini, S. (2017). Sustainable Pest Management. In: Orsini, F., Dubbeling, M., de Zeeuw, H., Gianquinto, G. (eds) Rooftop Urban Agriculture. Urban Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-57720-3_11

Download citation

Publish with us

Policies and ethics