Skip to main content

Managing Mineral Nutrition in Soilless Culture

  • Chapter
  • First Online:

Part of the book series: Urban Agriculture ((URBA))

Abstract

In most cases, rooftop agriculture uses soilless cultivation (or hydroponics) of plants, as the yield and the quality of the soilless-grown crops are often higher than those grown in the agricultural soil. In soilless culture, the elements that are essential or beneficial for plant growth and development are supplied through: (i) the addition of organic and/or synthetic fertilisers to the substrate before and after crop plantation; (ii) the supply of a nutrient solution, which is prepared dissolving one or more soluble fertilisers in the raw water and thus is delivered with the irrigation system (fertigation). In this chapter, the basic aspects of the mineral nutrition of hydroponically-grown plants and the methods that could be used for a sustainable management of fertigation in rooftop soilless culture and to improve the organoleptic and nutritional quality of rooftop food crops are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20. doi:10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Aqil F, Ahmed Wani A, Sousche YS (2006) Plant growth promoting potential of free-living diazotrophs and other rhizobacteria isolated from Northern Indian soil. Biotechnol J 1(10):1112–1123. doi:10.1002/biot.200600132

    Article  CAS  PubMed  Google Scholar 

  • Atiyeh RM, Subler S, Edwards CA, Bachman G, Metzger JD, Shuster W (2000) Effects of vermicomposts and composts on plant growth in horticulture container media and soil. Pedobiologia 44(5):579–590. doi:10.1078/S0031-4056(04)70073-6

    Article  Google Scholar 

  • Battacharyya D, Babgohari MZ, Prithiviraj PRB (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic 196:39–48. doi:10.1016/j.scienta.2015.09.012

    Article  CAS  Google Scholar 

  • Bi G, Evans WB, Spiers JM, Witcher AL (2010) Effects of organic and inorganic fertilizers on marigold growth and flowering. Hortscience 45(9):1373–1377

    Google Scholar 

  • Cakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38(6):1482–1487. doi:10.1016/j.soilbio.2005.09.019

    Article  Google Scholar 

  • Capulín-Grande J, Núñez-Escobar R, Sánchez-García P, Martínez-Garza A, Soto-Hernández M (2005) Producción de jitomate con estiércol líquido de bovino, acidulado con ácidos orgánicos e inorgánicos. Organo Cientifico de la Sociedad Mexicana de la Ciencia del Suelo, AC, Terra

    Google Scholar 

  • Carballo T, Gil MV, Calvo LF, Morán A (2009) The influence of aeration system, temperatura and compost origin on the phytotoxicity of compost tea. Compost Sci Util 17(2):127–139. doi:10.1080/1065657X.2009.10702411

    Article  Google Scholar 

  • Carpio LA, Davies FT Jr, Arnold MA (2005) Arbuscular mycrorrhizal fungi organic and inorganic controlled-release fertilizers: effect on growth and leachate of container-grown bush morning glory (Ipomoea carnea ssp. fistulosa) under high production temperatures. J Am Soc Hortic Sci 130(1):131–139

    Google Scholar 

  • Cesaro A, Belgiorno V, Guida M (2015) Compost from organic solid waste: quality assessment and European regulations for its sustainable use. Resour Conserv Recycl 94(1):72–79. doi:10.1016/j.resconrec.2014.11.003

    Article  Google Scholar 

  • Dorais M, Papadopoulos A, Gosselin A (2001) Greenhouse tomato fruit quality. Hortic Rev 26:239–350

    CAS  Google Scholar 

  • Dresbøll DB (2004) Optimisation of growing media for organic greenhouse production. In: PhD Dissertation, Royal Veterinary and Agricultural University, Denmark

    Google Scholar 

  • EFSA (2008) European Food Safety Authority – Nitrate in vegetables: scientific opinion of the panel on contaminants in the food chain. EFSA J 689:1–79

    Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Inc., Publishers, Sunderland

    Google Scholar 

  • EU (2011) Commission Regulation (EU) No 1258/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32011R1258&from=IT. Accessed 20 Sept 2016

  • Fan D, Hodges DM, Critchley AT, Prithiviraj B (2013) A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun Soil Sci Plant Anal 44(12):1873–1884. doi:10.1080/00103624.2013.790404

    Article  CAS  Google Scholar 

  • Fornes F, Sanchez-Perales M, Guardiola JL (2002) Effect of a seaweed extract on the productivity of’ de Nules’ Clementine mandarin and Navelina orange. Bot Mar 45(5):486–489

    Article  Google Scholar 

  • García GR, Dendooven L, Gutiérrez MFA (2008) Vermicomposting lechate (worm tea) as liquid fertilizer for maize (Zea mays L.) forage production. Asian J Plant Sci 7(4):360–367

    Article  Google Scholar 

  • Garland JL, Mackoqiak JL, Sager JC (1993) Hydroponic crop production using recycled nutrients from inedible crop residues, technical paper 932173. SAE, Warrendale

    Google Scholar 

  • Garland JL, Mackowiak CL, Strayer RF, Finger BW (1997) Integration of waste processing and biomass production systems as part of the KSC Breadboard project. Adv Space Res 20(10):1821–1826. doi:10.1016/S0273-1177(97)00847-8

    Article  CAS  PubMed  Google Scholar 

  • Gaskell M, Smith R (2007) Nitrogen sources for organic vegetable crops. HortTechnology 17(4):431–441

    CAS  Google Scholar 

  • González K, Rodríguez MN, Trejo L, García JL, Sánchez J (2013) Efluente y te de vermicompost en la producción de hortalizas de hoja en sistema NFT. Interciencia 38(12):863–869

    Google Scholar 

  • Haider MW, Ayyub CM, Pervez MA, Asad HU, Manan A, Raza SA, Ashraf I (2012) Impact of foliar application of seaweed extract on growth, yield and quality of potato (Solanum tuberosum L.) Soil Environ 31(2):157–162

    Google Scholar 

  • Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123(1–3):1–14. doi:10.1016/j.agee.2007.07.004

    Article  Google Scholar 

  • Hargreaves JC, Adl MS, Warman PR (2009) Are compost teas an effective nutrient amendment in the cultivation of strawberries? Soil and plant tissue effects. J Sci Food Agric 89(3):390–397. doi:10.1002/jsfa.3456

    Article  CAS  Google Scholar 

  • Hawkins MR (2010) Consumer interest and compost substrate management of organic and sustainable plant. University of Maine Electronic Thesis and Dissertations. Paper 729. http://digitalcommons.library.umaine.edu/etd/729

  • Hernández T, Chocano C, Moreno JL, García C (2016) Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops – effects on soil and plant. Soil Tillage Res 160:14–22. doi:10.1016/j.still.2016.02.005

    Article  Google Scholar 

  • Illera-Vives M, López-Mosquera ME, Salas-Sanjuan MA, López-Fabal A (2015) Leaching techniques for saline wastes composts used as growing media in organic agriculture: assessment and modelling. Environ Sci Pollut Res 22(9):6854–6863. doi:10.1007/s11356-014-3897-1

    Article  CAS  Google Scholar 

  • Jarecki MK, Voroney RP (2005) Evaluation of compost leachates for plant growth on hydroponic culture. J Plant Nutr 28(4):651–667. doi:10.1081/PLN-200052639

    Article  CAS  Google Scholar 

  • Malorgio F, Diaz KE, Ferrante A, Mensuali A, Pezzarossa B (2009) Effects of selenium addition on minimally processed leafy vegetables grown in floating system. J Sci Food Agric 89(13):2243–2251. doi:10.1002/jsfa.3714

    Article  CAS  Google Scholar 

  • Márquez HC, Cano R (2004) Producción de tomate orgánico bajo invernadero. In: C Leal Ch, Garza JAG (eds) 2do. Simposium Internacional de Producción de Cultivos en Invernadero. May Monterrey, NL, Fundación UANL y Facultad de Agronomía, UANL, pp 1–11

    Google Scholar 

  • Márquez-Hernández C, Cano-Ríos P, Figueroa-Viramontes U, Avila-Diaz JA, Rodríguez-Dimas N, García-Hernández JL (2013) Yield and quality of tomato with organic sources of fertilization under greenhouse conditions. Phyton (Buenos Aires) 82:55–61

    Google Scholar 

  • Massa D, Incrocci L, Maggini R, Carmassi G, Campiotti CA, Pardossi A (2010) Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato. Agric Water Manag 97(7):971–980. doi:10.1016/j.agwat.2010.01.029

    Article  Google Scholar 

  • Massa D, Incrocci L, Maggini R, Bibbiani C, Carmassi G, Malorgio F, Pardossi A (2011) Simulation of crop water and mineral relations in greenhouse soilless culture. Environ Model Softw 26(6):711–726. doi:10.1016/j.envsoft.2011.01.004

    Article  Google Scholar 

  • Mattson N (2014) Comparing substrate fertilizer amendments for spring bedding plants. Greenhouse Growing Magazine 32(13):48–54

    Google Scholar 

  • Mejía P, Salas MC (in press, Nov 2016) Uso de vermicompost de residuos hortícolas como sustrato en cultivo sin suelo de melón. V Jornadas de la Red Española de Compostaje. Sevilla

    Google Scholar 

  • Mills HA, Jones JB (1996) Plant analysis handbook II. A practical sampling, preparation, analysis, and interpretation guide. MicroMacro Publishing, Inc, Athen

    Google Scholar 

  • NOSB (2004) Compost tea task force final report. National Organic Standards Board. www.ams.usda.gov/nosb/meetings/Compost TeaTaskForceFinalReport pdf. Accessed 25 Oct 2012

  • Ochoa Martínez E, Figueroa Viramontes U, Cano Ríos P, Preciado Rangel P, Moreno Reséndez A, Rodríguez Dimas N (2009) Té de composta como fertilizante orgánico en la producción de tomate (Lycopersicon esculentum Mill.) en invernadero. Revista Chapingo. Serie Hortic 15(3):245–250

    Google Scholar 

  • Oliva-Llaven MA, Rodríguez HL, Mendoza NP, Ruiz SB, Álvarez S, Dendooven L (2010) Optimization of worm-bed leachate for culturing of tomato (Lycopersicum esculentum Mill) inoculated with Glomus fasciculatum and Pseudomonas fluorescens. Electron J Biotechnol 13(2):1–8

    Article  Google Scholar 

  • Olle M, Ngouajio M, Siomos A (2012) Vegetable quality and productivity as influenced by growing medium: a review. Žemdirbystė=Agriculture 99(4):399–408

    Google Scholar 

  • Palaniswamy U, McAvoy RJ, Bible B (2000) Omega-3-fatty acid concentration in Portulaca oleracea L. is altered by nitrogen source in hydroponic solution. J Am Soc Hortic Sci 125(2):190–194

    CAS  Google Scholar 

  • Pardossi A, Carmassi G, Diara C, Incrocci L, Maggini R, Massa D (2011) Fertigation and substrate management in closed soilless culture. EUPHOROS project, Deliverable n. 15. http://www.wageningenur.nl/upload_mm/8/c/0/aa4b4486-a9db-429f-8b03-f19d4cec3ee6_Fertigation%20and%20Substrate%20Management%20in%20Closed%20Soilless%20Culture.pdf. Accessed on 25 July 2017

  • Pavlou G, Ehaliotis CD, Kavvadias VA (2007) Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci Hortic 111(4):319–325. doi:10.1016/j.scienta.2006.11.003

    Article  CAS  Google Scholar 

  • Peña-Fleitas MT, Gallardo M, Thompson RB, Farneselli M, Padilla FM (2015) Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques. Ann Appl Biol 167(3):387–405. doi:10.1111/aab.12235

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponmurugan K, Sankaranarayanan A, Al-Dharbi NA (2012) Biological activities of plant growth promoting Azotobacter sp. isolated from vegetable crops rhizosphere soils. J Pure Appl Microbiol 6(4):1–10

    Google Scholar 

  • Postma J, Van Os E, Bonants PJM (2008) Pathogen detection and management strategies in soilless plant growing systems. In: Soilless culture: theory and practice. Elsevier Publications, Amsterdam, pp 425–457

    Chapter  Google Scholar 

  • Preciado Rangel P, Forti Hernández M, García-Hernández JL, Rueda Puente EO, Esparza Rivera JR, Lara Herrera A, Segura Castruita MA, Orozco Vidal JA (2011) Evaluación de soluciones nutritivas orgánicas en la producción de tomate en invernadero. Interciencia 36(9):689–693

    Google Scholar 

  • Raviv M (2005) Production of high-quality composts for horticultural purposes: a mini-review. HortTechnology 15(1):52–57

    Google Scholar 

  • Raviv M, Lieth JH (2008) Soilless culture: theory and practice. Elsevier, London, p 608

    Google Scholar 

  • Resh HM (2012) Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower. CRC Press, Boca Raton

    Book  Google Scholar 

  • Ruiz JL, Salas MC (in press, November 2016) Valorización del uso de bionutrientes en hidroponía. V Jornadas de la Red Española de Compostaje. Sevilla

    Google Scholar 

  • Russo VM (2006) Biological amendment fertilizer rate, and irrigation frequency for organic bell pepper transplant production. Hortscience 41(6):1402–1407

    CAS  Google Scholar 

  • Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86(1):10–17. doi:10.1002/jsfa.2351

    Article  CAS  Google Scholar 

  • Satti SME, López M, Al-Said FA (1994) Salinity induced changes in vegetative and reproductive growth in tomato. Commun Soil Sci Plant Anal 25(5–6):501–510

    Article  Google Scholar 

  • Savvas D, Passam H (2002) Hydroponic production of vegetables and ornamentals. Embryio Publications, Athens

    Google Scholar 

  • Savvas D, Ntatsi G, Passam HC (2009) Plant nutrition and physiological disorder in greenhouse grown tomato, pepper and eggplant. Eur J Plant Sci Biotechnol 2(1):45–61

    Google Scholar 

  • Selvaraj R, Selvi M, Shakila P (2004) Effect of seaweed liquid fertilizer on Abelmoschus esculentus and Lycopersicon esculentum. Seaweed Res Utility 26:121–123

    Google Scholar 

  • Senesi N (1989) Composted materials as organic fertilizers. Sci Total Environ 81:521–542. doi:10.1016/0048-9697(89)90161-7

    Article  Google Scholar 

  • Sonneveld C (1995) Fertigation in the greenhouse industry. In: Proceeding of the Dahlia Greidinger International Symposium on Fertigation. Haifa, Israel, pp 121–140

    Google Scholar 

  • Sonneveld C, Voogt W (2009) Plant nutrition of greenhouse crops. Springer, Dordrecht

    Book  Google Scholar 

  • Sonneveld C, Voogt W, Spanns L (1999) An universal algorithm for calculation of nutrient solutions. Acta Hortic 481:331–359. doi:10.17660/ActaHortic.1999.481.38

    Article  CAS  Google Scholar 

  • Steiner AA (1961) A universal method for preparing nutrient solutions of certain desired composition. Plant Soil 15(2):134–154. doi:10.1007/BF01347224

    Article  CAS  Google Scholar 

  • Strayer RF, Finger BW, Alazraki MP (1997) Evaluation of an anaerobic digestion system for processing CELSS crop residues for resource recovery. Adv Space Res 20(10):2009–2015

    Article  CAS  PubMed  Google Scholar 

  • Surrage VA, Lafrenière C, Dixon M, Zheng Y (2010) Benefits of vermicompost asa constituent of growing substrates used in the production of organicgreenhouse tomatoes. Hortscience 45(10):1510–1515

    Google Scholar 

  • Treadwell DD, Hochmuth GJ, Hochmuth RC, Simonne EH, Davis LL, Laughlin WL, Li Y, Olczyk T, Sprenkel RK, Osborne LS (2007) Nutrient management in organic greenhouse herb production: where are we now? HortTechnology 17(4):461–466

    CAS  Google Scholar 

  • White PJ, Broadly MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593. doi:10.1016/j.tplants.2005.10.001

    Article  PubMed  Google Scholar 

  • Williams KA, Nelson PV (1992) Low, controlled nutrient availability provided by organic waste materials for chrysanthemum. J Am Soc Hortic Sci 117(3):422–429

    Google Scholar 

  • Wu M, Kubota C (2008) Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci Hortic 116(2):122–129. doi:10.1016/j.scienta.2007.11.014

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125(1):155–166. doi:10.1016/j.geoderma.2004.07.003

    Article  Google Scholar 

  • Zhai Z, Ehret DL, Forge T, Helmer T, Lin W, Dorais M, Papadopoulos AP (2009) Organic fertilizers for greenhouse tomatoes: productivity and substratemicrobiology. Hortscience 44(3):800–809

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Pardossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pardossi, A., Incrocci, L., Salas, M.C., Gianquinto, G. (2017). Managing Mineral Nutrition in Soilless Culture. In: Orsini, F., Dubbeling, M., de Zeeuw, H., Gianquinto, G. (eds) Rooftop Urban Agriculture. Urban Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-57720-3_10

Download citation

Publish with us

Policies and ethics