Skip to main content

Molecular, Cellular, and Structural Biology of Grapevine fanleaf virus

  • Chapter
  • First Online:
Grapevine Viruses: Molecular Biology, Diagnostics and Management

Abstract

Grapevine fanleaf virus (GFLV) is one of the 15 viruses causing fanleaf degeneration, one of the most detrimental viral diseases of grapevines worldwide. GFLV belongs to the genus Nepovirus in the family Secoviridae. It was the first phytovirus for which transmission by an ectoparasitic dagger nematode vector was demonstrated and the first Nepovirus for which infectious clones were obtained, paving the way to studies on virus-vector-host interactions. Information on subcellular localization of GFLV-encoded proteins and the use of modified synthetic virus constructs resulted in a better understanding of virus movement and transmission. In recent years, advances on the identification of viral determinants involved in the specific transmission of GFLV by Xiphinema index were made, and the atomic structure of the virus was obtained at a 2.7 Å resolution, revealing potential sites of interaction with the nematode vector at the surface of the particle. Host factors involved in the early steps of the virus cell-to-cell movement and viral determinants of symptom development in herbaceous hosts were identified. Here we review the current knowledge of GFLV with a special emphasis on some of its unique features compared to other nepoviruses. We also discuss the recent progress in regard to new antiviral strategies and suggest future research priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amari, K., E. Boutant, C. Hofmann, C. Schmitt-Keichinger, L. Fernandez-Calvino, P. Didier, A. Lerich, J. Mutterer, C.L. Thomas, M. Heinlein, Y. Mély, A.J. Maule, and C. Ritzenthaler. 2010. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathogens 6: e1001119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amari, K., A. Lerich, C. Schmitt-Keichinger, V.V. Dolja, and C. Ritzenthaler. 2011. Tubule-guided cell-to-cell movement of a plant virus requires class XI myosin motors. PLoS Pathogens 7: e1002327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andret-Link, P., C. Laporte, L. Valat, C. Ritzenthaler, G. Demangeat, E. Vigne, V. Laval, P. Pfeiffer, and M. Fuchs. 2004a. Grapevine fanleaf virus: Still a major threat to the grapevine industry. Journal of Plant Pathology 86: 183–195.

    CAS  Google Scholar 

  • Andret-Link, P., C. Schmitt-Keichinger, G. Demangeat, V. Komar, and M. Fuchs. 2004b. The specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index is solely determined by the viral coat protein. Virology 320: 12–22.

    Article  CAS  PubMed  Google Scholar 

  • Baccarini, P. 1902. Roncet. Viticoltura Moderna 8: 241–248.

    Google Scholar 

  • Beijerinck, M.W. 1898. Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves. St. Paul: American Phytopathological Society.

    Google Scholar 

  • Belin, C., C. Schmitt, F. Gaire, B. Walter, G. Demangeat, and L. Pinck. 1999. The nine C-terminal residues of the grapevine fanleaf nepovirus movement protein are critical for systemic virus spread. Journal of General Virology 80: 1347–1356.

    Article  CAS  PubMed  Google Scholar 

  • Belin, C., C. Schmitt, G. Demangeat, V. Komar, L. Pinck, and M. Fuchs. 2001. Involvement of RNA2-encoded proteins in the specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index. Virology 291: 161–171.

    Article  CAS  PubMed  Google Scholar 

  • Belval, L., C. Hemmer, C. Sauter, C. Reinbold, J.-D. Fauny, F. Berthold, L. Ackerer, C. Schmitt-Keichinger, O. Lemaire, G. Demangeat, and C. Ritzenthaler. 2016. Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus-like particles. Plant Biotechnology Journal 14: 2288–2299.

    Google Scholar 

  • Bertioli, D., R. Harris, M. Edwards, J. Cooper, and W. Hawes. 1991. Transgenic plants and insect cells expressing the coat protein of arabis mosaic virus produce empty virus-like particles. Journal of General Virology 72: 1801–1809.

    Article  CAS  PubMed  Google Scholar 

  • Bienz, K., D. Egger, T. Pfister, and M. Troxler. 1992. Structural and functional characterization of the poliovirus replication complex. Journal of Virology 66: 2740–2747.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cadman, C.H., H.F. Dias, and B.D. Harrison. 1960. Sap-transmissible viruses associated with diseases of grape vines in Europe and North America. Nature 187: 577–579.

    Article  Google Scholar 

  • Carette, J., M. Stuiver, J. Van Lent, J. Wellink, and A. Van Kammen. 2000. Cowpea mosaic virus infection induces a massive proliferation of endoplasmic reticulum but not Golgi membranes and is dependent on de novo membrane synthesis. Journal of Virology 74: 6556–6563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazalis-Allut, L.C. 1865. De la dégénération des vignes, 57–61. Montpellier: Oeuvres agricoles.

    Google Scholar 

  • Čepin, U., I. Gutiérrez-Aguirre, M. Ravnikar, and M. Pompe-Novak. 2015. Frequency of occurrence and genetic variability of Grapevine fanleaf virus satellite RNA. Plant Pathology 65: 510–520.

    Article  CAS  Google Scholar 

  • Chandrasekar, V., and J. Johnson. 1998. The structure of tobacco ringspot virus: A link in the evolution of icosahedral capsids in the picornavirus superfamily. Structure 6: 157–171.

    Article  CAS  PubMed  Google Scholar 

  • Chisholm, J., G. Zhang, A. Wang, and H. Sanfaçon. 2007. Peripheral association of a polyprotein precursor form of the RNA-dependent RNA polymerase of Tomato ringspot virus with the membrane-bound viral replication complex. Virology 368: 133–144.

    Article  CAS  PubMed  Google Scholar 

  • Cseh, E., A. Takács, L. Kocsis, and R. Gáborjányi. 2012. General properties of grapevine viruses occurring in Hungary. Journal of Central European Agriculture 13: 44–57.

    Article  Google Scholar 

  • Das, S., and D.J. Raski. 1968. Vector-efficiency of Xiphinema index in the transmission of grapevine fanleaf virus. Nematologica 14: 55–62.

    Article  Google Scholar 

  • Elbeaino, T., M. Digiaro, S. Ghebremeskel, and G.P. Martelli. 2012. Grapevine deformation virus: Completion of the sequence and evidence on its origin from recombination events between Grapevine fanleaf virus and Arabis mosaic virus. Virus Research 166: 136–140.

    Article  CAS  PubMed  Google Scholar 

  • Elbeaino, T., H. Kiyi, R. Boutarfa, A. Minafra, G. Martelli, and M. Digiaro. 2014. Phylogenetic and recombination analysis of the homing protein domain of grapevine fanleaf virus (GFLV) isolates associated with ‘yellow mosaic’ and ‘infectious malformation’ syndromes in grapevine. Archives of Virology 159: 2757–2764.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, I., T. Candresse, O. Le Gall, and J. Dunez. 1999. The 5′ noncoding region of grapevine chrome mosaic nepovirus RNA-2 triggers a necrotic response on three Nicotiana spp. Molecular Plant-Microbe Interactions 12: 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Francki, R.I.B., R.G. Milne, and T. Hatya. 1985. Nepovirus group, atlas of plant viruses, 23–38. Raton: CRC Press.

    Book  Google Scholar 

  • Fuchs, M., M. Pinck, M.A. Serghini, M. Ravelonandro, B. Walter, and L. Pinck. 1989. The nucleotide sequence of satellite RNA in grapevine fanleaf virus, strain F13. Journal of General Virology 70: 955–962.

    Article  CAS  PubMed  Google Scholar 

  • Gaire, F., C. Schmitt, C. Stussi-Garaud, L. Pinck, and C. Ritzenthaler. 1999. Protein 2A of Grapevine fanleaf nepovirus is implicated in RNA2 replication and colocalizes to the replication site. Virology 264: 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Gottschammel, J., Maghuly, F., Laimer, M., Castellano, M.A., 2009. Detection of Virus-like particles (VLPs) by ISEM in transgenic grapevines expressing different GFLV CP-constructs. Progrès Agricole et Viticole, 2009, Hors Série – Extended abstracts 16th Meeting of ICVG, Dijon, France, 31 Aug–4 Sept 2009.

    Google Scholar 

  • Gottula, J., D. Lapato, K. Cantilina, S. Saito, B. Bartlett, and M. Fuchs. 2013. Genetic variability, evolution, and biological effects of grapevine fanleaf virus satellite RNAs. Phytopathology 103: 1180–1187.

    Article  CAS  PubMed  Google Scholar 

  • Han, S., and H. Sanfaçon. 2003. Tomato ringspot virus proteins containing the nucleoside triphosphate binding domain are transmembrane proteins that associate with the endoplasmic reticulum and cofractionate with replication complexes. Journal of Virology 77: 523–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hans, F., M. Fuchs, and L. Pinck. 1992. Replication of grapevine fanleaf virus satellite RNA transcripts in Chenopodium quinoa protoplasts. Journal of General Virology 73: 2517–2523.

    Article  CAS  PubMed  Google Scholar 

  • Hans, F., M. Pinck, and L. Pinck. 1993. Location of the replication determinants of the satellite RNA associated with grapevine fanleaf nepovirus (strain F13). Biochimie 75: 597–603.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, B.D., W.M. Robertson, and C.E. Taylor. 1974. Specificity of retention and transmission of viruses by nematodes. Journal of Nematology 6: 155–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hesketh, E.L., Y. Meshcheriakova, K.C. Dent, P. Saxena, R.F. Thompson, J.J. Cockburn, G.P. Lomonossoff, and N.A. Ranson. 2015. Mechanisms of assembly and genome packaging in an RNA virus revealed by high-resolution cryo-EM. Nature Communications 6: 10113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt, W.B., D.J. Raski, and A.C. Goheen. 1958. Nematode vector of soil-borne fanleaf virus of grapevines. Phytopathology 48: 586–595.

    Google Scholar 

  • Hewitt, W.B., A.C. Goheen, D.J. Raski, and G.V.J. Gooding. 1962. Studies on virus diseases of the grapevine in California. Vitis 3: 57–83.

    Google Scholar 

  • Hipper, C., V. Brault, V. Ziegler-Graff, and F. Revers. 2013. Viral and cellular factors involved in phloem transport of plant viruses. Frontiers in Plant Science 4: 154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horvath, J., I. Tobias, and K. Hunyadi. 1994. New natural herbaceous hosts of grapevine fanleaf nepovirus. Horticultural Science 26: 31–32.

    Google Scholar 

  • Izadpanah, K., M. Zaki-Aghl, Y.P. Zhang, S.D. Daubert, and A. Rowhani. 2003. Bermuda grass as a potential reservoir host for Grapevine fanleaf virus. Plant Disease 87: 1179–1182.

    Article  Google Scholar 

  • Jardak-Jamoussi, R., P. Winterhagen, B. Bouamama, C. Dubois, A. Mliki, T. Wetzel, A. Ghorbel, and G.M. Reustle. 2009. Development and evaluation of a GFLV inverted repeat construct for genetic transformation of grapevine. Plant Cell, Tissue and Organ Culture 97: 187–196.

    Article  CAS  Google Scholar 

  • Jelly, N., P. Schellenbaum, B. Walter, and P. Maillot. 2012. Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Research 21: 1319–1327.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, P., Y. Liu, H.-C. Ma, A.V. Paul, and E. Wimmer. 2014. Picornavirus morphogenesis. Microbiology and Molecular Biology Reviews 78: 418–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, H.D. 2015. Regulatory uncertainty over genome editing. Nature Plants 1: 14011.

    Article  PubMed  Google Scholar 

  • Karetnikov, A., and K. Lehto. 2007. The RNA2 5′ leader of Blackcurrant reversion virus mediates efficient in vivo translation through an internal ribosomal entry site mechanism. Journal of General Virology 88: 286–297.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2008. Translation mechanisms involving long-distance base pairing interactions between the 5′ and 3′ non-translated regions and internal ribosomal entry are conserved for both genomic RNAs of Blackcurrant reversion nepovirus. Virology 371: 292–308.

    Article  CAS  PubMed  Google Scholar 

  • Karetnikov, A., M. Keränen, and K. Lehto. 2006. Role of the RNA2 3′ non-translated region of Blackcurrant reversion nepovirus in translational regulation. Virology 354: 178–191.

    Article  CAS  PubMed  Google Scholar 

  • Karran, R., and H. Sanfacon. 2014. Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. Molecular Plant-Microbe Interactions 27: 933–943.

    Article  CAS  PubMed  Google Scholar 

  • Kurth, E.G., V.V. Peremyslov, A.I. Prokhnevsky, K.D. Kasschau, M. Miller, J.C. Carrington, and V.V. Dolja. 2012. Virus-derived gene expression and RNA interference vector for grapevine. Journal of Virology 86: 6002–6009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai-Kee-Him, J., P. Schellenberger, C. Dumas, E. Richard, S. Trapani, V. Komar, G. Demangeat, C. Ritzenthaler, and P. Bron. 2013. The backbone model of the Arabis mosaic virus reveals new insights into functional domains of Nepovirus capsid. Journal of Structural Biology 182: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Laliberté, J.-F., and H. Sanfaçon. 2010. Cellular remodeling during plant virus infection. Annual Review of Phytopathology 48: 69–91.

    Article  PubMed  CAS  Google Scholar 

  • Lamprecht, R.L., M. Spaltman, D. Stephan, T. Wetzel, and J.T. Burger. 2013. Complete nucleotide sequence of a South African isolate of Grapevine fanleaf virus and its associated satellite RNA. Viruses 5: 1815–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laporte, C., G. Vetter, A.-M. Loudes, D.G. Robinson, S. Hillmer, C. Stussi-Garaud, and C. Ritzenthaler. 2003. Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fanleaf virus movement protein in tobacco BY-2 Cells. The Plant Cell 15: 2058–2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Gall, O., P. Christian, C.M. Fauquet, A.Q. King, N. Knowles, N. Nakashima, G. Stanway, and A.E. Gorbalenya. 2008. Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Archives of Virology 153: 715–727.

    Article  PubMed  CAS  Google Scholar 

  • Maliogka, V.I., G.P. Martelli, M. Fuchs, and N.I. Katis. 2015. Chapter six – control of viruses infecting grapevine. Advances in Virus Research 91: 175–227.

    Article  PubMed  Google Scholar 

  • Margis, R., and L. Pinck. 1992. Effects of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of Grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190: 884–888.

    Article  CAS  PubMed  Google Scholar 

  • Margis, R., M. Viry, M. Pinck, and L. Pinck. 1991. Cloning and in vitro characterization of the grapevine fanleaf virus proteinase cistron. Virology 185: 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Margis, R., C. Ritzenthaler, J. Reinbolt, M. Pinck, and L. Pinck. 1993. Genome organization of grapevine fanleaf nepovirus RNA2 deduced from the 122K polyprotein P2 in vitro cleavage products. Journal of General Virology 74: 1919–1926.

    Article  CAS  PubMed  Google Scholar 

  • Margis, R., M. Viry, M. Pinck, N. Bardonnet, and L. Pinck. 1994. Differential proteolytic activities of precursor and mature forms of the 24K proteinase of Grapevine fanleaf nepovirus. Virology 200: 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Marmonier, A., P. Schellenberger, D. Esmenjaud, C. Schmitt-Keichinger, C. Ritzenthaler, P. Andret-Link, O. Lemaire, M. Fuchs, and G. Demangeat. 2010. The coat protein determines the specificity of virus transmission by Xiphinema diversicaudatum. Journal of Plant Pathology 92: 275–279.

    CAS  Google Scholar 

  • Martelli, G.P. 1993. Graft-transmissible diseases of grapevines. Handbook for detection and diagnosis. Rome: Food and Agricultural Organization of the United Nations Publication Division.

    Google Scholar 

  • ———. 2014a. Directory of virus and virus-like diseases of the grapevine and their agents. Journal of Plant Pathology 96: 1–136.

    Google Scholar 

  • ———. 2014b. Virus diseases of grapevine.

    Book  Google Scholar 

  • Martelli, G.P., E. Boudon-Padieu. 2006. Directory of infectious diseases of grapevines and viroses and virus-like diseases of the grapevine: Bibliographic report 1998–2004., In ed. G.P. Martelli and E. Boudon-Padieu. Bari: CIHEAM, 2006. (Options Méditerranéennes : Série B. Etudes et Recherches; n. 55).

    Google Scholar 

  • Martelli, G.P., and G. Piro. 1975. Virus diseases of the grapevine in a Sicilian herbarium of the past century. Vitis 13: 329–335.

    Google Scholar 

  • Mekuria, T.A., L.R. Gutha, R.R. Martin, and R.A. Naidu. 2009. Genome diversity and intra- and interspecies recombination events in Grapevine fanleaf virus. Phytopathology 99: 1394–1402.

    Article  CAS  PubMed  Google Scholar 

  • Merzlyak, E.M., J. Goedhart, D. Shcherbo, M.E. Bulina, A.S. Shcheglov, A.F. Fradkov, A. Gaintzeva, K.A. Lukyanov, S. Lukyanov, T.W.J. Gadella, and D.M. Chudakov. 2007. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods 4: 555–557.

    Article  CAS  PubMed  Google Scholar 

  • Morris-Krsinich, B.A.M., R.L.S. Forster, and D.W. Mossop. 1983. The synthesis and processing of the nepovirus grapevine fanleaf virus proteins in rabbit reticulocyte lysate. Virology 130: 523–526.

    Article  CAS  PubMed  Google Scholar 

  • Murant, A.F. 1981. Nepoviruses. In Handbook of plant virus infections and comparative diagnosis, ed. E. Kurstak, 197–238. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • Muyldermans, S. 2013. Nanobodies: Natural single-domain antibodies. Annual Review of Biochemistry 82: 775–797.

    Article  CAS  PubMed  Google Scholar 

  • Naraghi-Arani, P., S. Daubert, and A. Rowhani. 2001. Quasispecies nature of the genome of Grapevine fanleaf virus. Journal of General Virology 82: 1791–1795.

    Article  CAS  PubMed  Google Scholar 

  • Newburn, L.R., and K.A. White. 2015. Cis-acting RNA elements in positive-strand RNA plant virus genomes. Virology 479–480: 434–443.

    Article  PubMed  CAS  Google Scholar 

  • Nölke, G., P. Cobanov, K. Uhde-Holzem, G. Reustle, R. Fischer, and S. Schillberg. 2009. Grapevine fanleaf virus (GFLV)-specific antibodies confer GFLV and Arabis mosaic virus (ArMV) resistance in Nicotiana benthamiana. Molecular Plant Pathology 10: 41–49.

    Article  PubMed  Google Scholar 

  • Nourinejhad Zarghani, S., L. Dupuis-Maguiraga, A. Bassler, and T. Wetzel. 2014. Mapping of the exchangeable and dispensable domains of the RNA 2-encoded 2AHP protein of Arabis mosaic nepovirus. Virology 458–459: 106–113.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, J.E., P.F. Tennant, and M. Fuchs. 2011. Virus-resistant transgenic horticultural crops: Safety issues and risk assessment. In Transgenic horticultural crops: Challenges and opportunities, ed. B. Mou and R. Scorza, 263–287. Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Paul, D., and R. Bartenschlager. 2013. Architecture and biogenesis of plus-strand RNA virus replication factories. World Journal of Virology 2: 32–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinck, L., M. Fuchs, M. Pinck, M. Ravelonandro, and B. Walter. 1988. A satellite RNA in Grapevine fanleaf virus strain F13. Journal of General Virology 69: 233–239.

    Article  CAS  Google Scholar 

  • Pumplin, N., and O. Voinnet. 2013. RNA silencing suppression by plant pathogens: Defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology 11: 745–760.

    Article  CAS  PubMed  Google Scholar 

  • Quacquarelli, A., D. Gallitelli, V. Savino, and G.P. Martelli. 1976. Properties of Grapevine fanleaf virus. Journal of General Virology 32: 349–360.

    Article  Google Scholar 

  • Raski, D.J., A.R. Maggenti, and N.O. Jones. 1973. Location of grapevine fanleaf and yellow mosaic virus particles in Xiphinema index. Journal of Nematology 5: 208–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raski, D.J., A.C. Goheen, L.A. Lider, and C.P. Meredith. 1983. Strategies against grapevine fanleaf virus and its nematode vector. Plant Disease 67: 335–339.

    Article  Google Scholar 

  • Ritzenthaler, C. 2011. Parallels and distinctions in the direct cell-to-cell spread of the plant and animal viruses. Current Opinion in Virology 1: 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Ritzenthaler, C., and C. Hofmann. 2007. Tubule-guided movement of plant viruses. In Viral transport in plants, ed. E. Weigmann and M. Heinlein. Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Ritzenthaler, C., M. Viry, M. Pinck, R. Margis, M. Fuchs, and L. Pinck. 1991. Complete nucleotide sequence and genetic organization of grapevine fanleaf nepovirus RNA1. Journal of General Virology 72: 2357–2365.

    Article  CAS  PubMed  Google Scholar 

  • Ritzenthaler, C., A.-C. Schmit, P. Michler, C. Stussi-Garaud, and L. Pinck. 1995. Grapevine fanleaf nepovirus P38 putative movement protein is located on tubules in vivo. Molecular Plant-Microbe Interactions 8: 379–387.

    Article  CAS  Google Scholar 

  • Ritzenthaler, C., C. Laporte, F. Gaire, P. Dunoyer, C. Schmitt, S. Duval, A. Piequet, A.M. Loudes, O. Rohfritsch, C. Stussi-Garaud, and P. Pfeiffer. 2002. Grapevine fanleaf virus replication occurs on endoplasmic reticulum-derived membranes. Journal of Virology 76: 8808–8819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, I.M., and D.J.F. Brown. 1980. Detection of six nepoviruses in their nematode vectors by immunosorbent electron microscopy. The Annals of Applied Biology 96: 187–192.

    Article  Google Scholar 

  • Saldarelli, P., A. Minafra, and B. Walter. 1993. A survey of grapevine fanleaf nepovirus isolates for the presence of satellite RNA. Vitis 32: 99–102.

    CAS  Google Scholar 

  • Sanfaçon, H. 2008. Nepovirus. In Encyclopedia of virology, ed. M.H.V. van Regenmortel, 3rd ed., 405–413. Oxford: Elsevier.

    Chapter  Google Scholar 

  • ———., 2013. Investigating the role of viral integral membrane proteins in promoting the assembly of nepovirus and comovirus replication factories. Frontiers in Plant Science 3, Article 313, 317 pages.

    Google Scholar 

  • Sanfaçon, H., J. Wellink, O. Le Gall, A. Karasev, R. van der Vlugt, and T. Wetzel. 2009. Secoviridae: A proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Archives of Virology 154: 899–907.

    Article  PubMed  CAS  Google Scholar 

  • Sanford, J.C., and S.A. Johnston. 1985. The concept of parasite-derived resistance. Deriving resistance genes from the parasite’s own genome. Journal of Theoretical Biology 113: 395–405.

    Article  Google Scholar 

  • Sauer, N.J., J. Mozoruk, R.B. Miller, Z.J. Warburg, K.A. Walker, P.R. Beetham, C.R. Schöpke, and G.F.W. Gocal. 2016. Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnology Journal 14: 496–502.

    Article  CAS  PubMed  Google Scholar 

  • Savastano, L. 1908. Note di patologia arborea. In Bollettino dell’arboricoltura italiana, ed. F. Giannini, 16. Napoli: Già pubbl.

    Google Scholar 

  • Schaeffer, S.M., and P.A. Nakata. 2015. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Science 240: 130–142.

    Article  CAS  PubMed  Google Scholar 

  • Schellenberger, P., P. Andret-Link, C. Schmitt-Keichinger, M. Bergdoll, A. Marmonier, E. Vigne, O. Lemaire, M. Fuchs, G. Demangeat, and C. Ritzenthaler. 2010. A stretch of 11 amino acids in the ßB-ßC loop of the coat protein of Grapevine fanleaf virus is essential for transmission by the nematode Xiphinema index. Journal of Virology 84: 7924–7933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellenberger, P., C. Sauter, B. Lorber, P. Bron, S. Trapani, M. Bergdoll, A. Marmonier, C. Schmitt-Keichinger, O. Lemaire, G. Demangeat, and C. Ritzenthaler. 2011. Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission. PLoS Pathogens 7: e1002034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitsonen, J.J.T., P. Susi, A. Lemmetty, and S.J. Butcher. 2008. Structure of the mite-transmitted Blackcurrant reversion nepovirus using electron cryo-microscopy. Virology 378: 162–168.

    Article  CAS  PubMed  Google Scholar 

  • Serghini, M.A., M. Fuchs, M. Pinck, J. Reinbolt, B. Walter, and L. Pinck. 1990. RNA2 of Grapevine fanleaf virus: Sequence analysis and coat protein cistron location. Journal of General Virology 71: 1433–1441.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., R. Rothnagel, B.V.V. Prasad, and B. Buckley. 1995. Expression of tobacco ringspot virus capsid protein and satellite RNA in insect cells and three-dimensional structure of tobacco ringspot virus-like particles. Virology 213: 472–481.

    Article  CAS  PubMed  Google Scholar 

  • Steil, B.P., and D.J. Barton. 2009. Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Research 139: 240–252.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, C., and W. Robertson. 1970. Sites of virus retention in the alimentary tract of the nematode vectors, Xiphinema diversicaudatum (Micol.) and X. index (Thorne and Allen). Annals of Applied Biology 66: 375–380.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, C.L., E.M. Bayer, C. Ritzenthaler, L. Fernandez-Calvino, and A.J. Maule. 2008. Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biology 6: e7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uzest, M., D. Gargani, M. Drucker, E. Hébrard, E. Garzo, T. Candresse, A. Fereres, and S. Blanc. 2007. A protein key to plant virus transmission at the tip of the insect vector stylet. Proceedings of the National Academy of Sciences of the United States of America 104: 17959–17964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Vlugt, R.A.A., M. Verbeek, A.M. Dullemans, W.M. Wintermantel, W.J. Cuellar, A. Fox, and J.R. Thompson. 2015. Torradoviruses. Annual Review of Phytopathology 53: 485–512.

    Article  PubMed  CAS  Google Scholar 

  • van Lent, J.M.W., and C. Schmitt-Keichinger. 2006. Viral movement proteins induce tubule formation in plant and insect cells. In Cell-cell channels, ed. F. Baluska, D. Volkmann, and P.W. Barlow, 160–175. Georgetown: Springer Landes Bioscience.

    Chapter  Google Scholar 

  • van Lent, J., M. Storms, F. van der Meer, J. Wellink, and R. Goldbach. 1991. Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. Journal of General Virology 72: 2615–2623.

    Article  PubMed  Google Scholar 

  • Vigne, E., V. Komar, and M. Fuchs. 2004. Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Research: 132165–132179.

    Google Scholar 

  • Vigne, E., A. Marmonier, and M. Fuchs. 2008. Multiple interspecies recombination events within RNA2 of Grapevine fanleaf virus and Arabis mosaic virus. Archives of Virology 153: 1771–1776.

    Article  CAS  PubMed  Google Scholar 

  • Vigne, E., J. Gottula, C. Schmitt-Keichinger, V. Komar, L. Ackerer, L. Belval, L. Rakotomalala, O. Lemaire, C. Ritzenthaler, and M. Fuchs. 2013. A strain-specific segment of the RNA-dependent RNA polymerase of Grapevine fanleaf virus determines symptoms in Nicotiana species. Journal of General Virology 94: 2803–2813.

    Article  CAS  PubMed  Google Scholar 

  • Viry, M., M.A. Serghini, F. Hans, C. Ritzenthaler, M. Pinck, and L. Pinck. 1993. Biologically active transcripts from cloned cDNA of genomic grapevine fanleaf nepovirus RNAs. Journal of General Virology 74: 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Vuittenez, A., M.-C. Munck, and J. Kuszala. 1964. Souches de virus à haute agressivités isolées de vignes atteintes de dégénérescence infectieuse. Études de Virologie Appliquée 5: 68–78.

    Google Scholar 

  • Walker, M., J. Chisholm, T. Wei, B. Ghoshal, H. Saeed, M. Rott, and H. Sanfaçon. 2015. Complete genome sequence of three tomato ringspot virus isolates: evidence for reassortment and recombination. Archives of Virology 160: 543–547.

    Article  CAS  PubMed  Google Scholar 

  • Walter, B. 1988. Quelques exemples de la reaction physiologique de la vigne en presence de virus. Bulletin de l’Organisation Internationale de la Vigne et du vin 687–688: 383–390.

    Google Scholar 

  • Walter, B., and L. Etienne. 1987. Detection of the grapevine fanleaf viruses away from the period of vegetation. Journal of Phytopathology 120: 355–364.

    Article  Google Scholar 

  • Walter, B., J. Kuszala, and A. Vuittenez. 1979. Diagnostic sérologique par les tests PALLAS et ELISA. Application aux virus de la rhizomanie de la betterave et du court-noué de la vigne. Annales de Phytopathologie 11: 568–569.

    Google Scholar 

  • Walter, B., A. Vuittenez, J. Kuszala, G. Stocky, J. Burckard, and M.H.V. van Regenmortel. 1984. Détection sérologique des virus du court-noué de la vigne par le test ELISA. Agronomie 4: 527–534.

    Article  Google Scholar 

  • Wang, A., and H. Sanfaçon. 2000. Proteolytic processing at a novel cleavage site in the N-terminal region of the tomato ringspot nepovirus RNA-1-encoded polyprotein in vitro. Journal of General Virology 81: 2771–2781.

    Article  CAS  PubMed  Google Scholar 

  • Wang, A., S. Han, and H. Sanfaçon. 2004. Topogenesis in membranes of the NTB-VPg protein of Tomato ringspot nepovirus: Definition of the C-terminal transmembrane domain. Journal of General Virology 85: 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, T., M. Fuchs, M. Bobko, and G. Krczal. 2002. Size and sequence variability of the arabis mosaic virus protein 2A. Archives of Virology 147: 1643–1653.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, T., J. Chisholm, A. Bassler, and H. Sanfaçon. 2008. Characterization of proteinase cleavage sites in the N-terminal region of the RNA1-encoded polyprotein from Arabis mosaic virus (subgroup A nepovirus). Virology 375: 159–169.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, T., J. Chisholm, L. Dupuis-Maguiraga, A. Bassler, and H. Sanfacon. 2013. In vitro and in vivo evidence for differences in the protease activity of two arabis mosaic nepovirus isolates and their impact on the infectivity of chimeric cDNA clones. Virology 446: 102–111.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, J.-S., J. Ding, and Y. Li. 2015. Genome-editing technologies and their potential application in horticultural crop breeding. Horticulture Research 2: 15019–15028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarzyńska-Nowak, A., I. Ferriol, B.W. Falk, N. Borodynko-Filas, and B. Hasiów-Jaroszewska. 2017. Construction of Agrobacterium tumefaciens-mediated tomato black ring virus infectious cDNA clones. Virus Research 230: 59–62.

    Google Scholar 

  • Zhang, G., and H. Sanfaçon. 2006. Characterization of membrane association domains within the tomato ringspot nepovirus X2 protein, an endoplasmic reticulum-targeted polytopic membrane protein. Journal of Virology 80: 10847–10857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, G., V. Gurtu, and S.R. Kain. 1996. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochemical and Biophysical Research Communications 227: 707–711.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, F., U.S. Hwang, S. Lim, R.H. Yoo, D. Igori, S.-H. Lee, H.-S. Lim, and J.S. Moon. 2015. Complete genome sequence and construction of infectious full-length cDNA clones of tobacco ringspot nepovirus, a viral pathogen causing bud blight in soybean. Virus Genes 51: 163–166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marc Fuchs for critical reading of the manuscript, Jean-Yves Sgro for the GFLV roadmap, and Emmanuelle Vigne for the pictures of N. benthamiana leaves. CH was supported by grants from the Région Alsace and INRA and FB by the Ministère de l’éducation nationale, de l’enseignement supérieur et de la recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schmitt-Keichinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schmitt-Keichinger, C., Hemmer, C., Berthold, F., Ritzenthaler, C. (2017). Molecular, Cellular, and Structural Biology of Grapevine fanleaf virus . In: Meng, B., Martelli, G., Golino, D., Fuchs, M. (eds) Grapevine Viruses: Molecular Biology, Diagnostics and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-57706-7_4

Download citation

Publish with us

Policies and ethics