Skip to main content

Grapevine rupestris stem pitting-associated virus

  • Chapter
  • First Online:
Grapevine Viruses: Molecular Biology, Diagnostics and Management

Abstract

Grapevine rupestris stem pitting-associated virus (GRSPaV) is a member of the genus Foveavirus (family Betaflexiviridae, order Tymovirales). GRSPaV was discovered in 1998 from grapevines affected with Rupestris stem pitting, a widespread graft-transmissible disease among commercial grapevines worldwide. Later research has demonstrated that different genetic variants of GRSPaV are closely associated with, and likely the causal agent of, Rupestris stem pitting and vein necrosis. However, definitive proof for its etiological role in either disease is lacking. In the past two decades, much progress has been made in several fronts concerning this virus. Compelling evidence demonstrates that GRSPaV comprises a wide range of genetic variants differing extensively in genome sequence. To date, the complete or near-complete genomes of 15 isolates have been sequenced. Phylogenetic analyses revealed the existence of eight clusters of viral variants. Interestingly, the population structure of GRSPaV differs sharply depending on whether the infected plant is a rootstock or a scion cultivar. GRSPaV exists as a uniform population in rootstocks, with GRSPaV-1 being detected in Vitis riparia and its hybrids, while GRSPaV-SG1 detected in Vitis rupestris and its hybrids. In contrast, commercial grape cultivars are generally infected with mixtures of distinct variants. Quick, reliable, and sensitive methods have been developed to detect GRSPaV. The subcellular localization of proteins encoded by GRSPaV has been elucidated using fluorescent protein tagging and microscopy. The establishment of infectious GRSPaV clones has enabled diverse investigations on gene function and viral replication and, ultimately, the development of GRSPaV as a vector for various applications. It is hoped that GRSPaV would ultimately serve as an excellent model system for the study of members of the family Betaflexiviridae and perhaps many other viruses that infect woody fruit crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M., J. Kreuze. 2015. Revision of family Betaflexiviridae, order Tymovirales. Approved proposal to the ICTV available at the ICTV website https://talk.ictvonline.org/taxonomy/.

  • Adams, M.J., G.P. Accotto, A.A. Agranovsky, M. Bar-Joseph, D. Boscia, A.A. Brunt, T. Candresse, R.H.A. Coutts, V.V. Dolja, B.W. Falk, G.D. Foster, D. Gonsalves, W. Jelkmann, A. Karasev, G.P. Martelli, M. Mawassi, R.G. Milne, A. Minafra, S. Namba, A. Rowhani, H.J. Vetten, V.K. Vishnichenko, G.C. Wisler, N. Yoshikawa, and S.K. Zavriev. 2005. Flexiviridae. In Eighth Report of the International Committee on Taxonomy of Viruses, ed. C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, and L.A. Ball, 1089–1124. San Diego: Elsevier Academic Press.

    Google Scholar 

  • Al Rwahnih, M., S. Daubert, D. Golino, and A. Rowhani. 2009. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387: 395–340.

    Article  PubMed  Google Scholar 

  • Alabi, O.J., R.R. Martin, and R.A. Naidu. 2010. Sequence diversity, population genetics and potential recombination events in Grapevine rupestris stem pitting-associated virus in Pacific North-West vineyards. Journal of General Virology 91: 265–276.

    Article  CAS  PubMed  Google Scholar 

  • Azzam, Ossmat I. 1991. Detection of dsRNA in grapevines showing symptoms of rupestris stem pitting disease and the variabilities encountered. Plant Disease 75(9): 960.

    Google Scholar 

  • Bartola, M.D. 2014. Grapevine Rupestris Stem Pitting-associated Virus (GRSPaV) and Vein Necrosis: Effect of genetic variability in symptoms expression. PhD Thesis. Università di Pisa, Scuola superiore Sant’Anna.

    Google Scholar 

  • Basso, Marcos Fernando, Thor Vinícius Martins Fajardo, Marcelo Eiras, Ricardo Antônio Ayub, and Osmar Nickel. 2010. Produção de antissoro policlonal utilizando a proteà na capsidial recombinante do Rupestris stem pitting-associated virus. Ciência Rural 40(11): 2385–2388.

    Article  CAS  Google Scholar 

  • Borgo, M, F. Anaclerio, N. Bertazzon, E. Angelini. 2006. The relationship between Grapevine rupestris stem pitting-associated virus and Rupestris stem pitting and vein necrosis diseases. In Extended Abstracts of the 15th Meeting of the ICVG. Stellenbosch, South Africa. Apr 3–7, 2006, 75–76.

    Google Scholar 

  • Bouyahia, H., D. Boscia, V. Savino, P. La Notte, C. Pirolo, M.A. Castellano, A. Minafra, and G.P. Martelli. 2005. Grapevine rupestris stem pitting-associated virus is linked with grapevine vein necrosis. Vitis 44: 133–137.

    CAS  Google Scholar 

  • ———. 2006. The aetiological role of Grapevine rupestris stem pitting-associated virus in grapevine vein necrosis and Rupestris stem pitting diseases: State of the art and open questions. In Extended Abstracts of the 15th Meeting of the ICVG. Stellenbosch, South Africa. Apr 3–7, 77–78.

    Google Scholar 

  • Bratlie, M.S., and F. Drablos. 2005. Bioinformatic mapping of AlkB homology domains in viruses. BMC Genomics 6: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buck, K.W. 1996. Comparison of the replication of positive-stranded RNA viruses of plants and animals. Advances in Virus Research 47: 159–251.

    Article  CAS  PubMed  Google Scholar 

  • Buzkan, N., P. La Notte, S. Karadag, A. Aktan, P. Saldarelli, and A. Minafra. 2015. Detection of Grapevine rupestris stem pitting-associated virus in autochthonous grapevine cultivars in Turkey. Journal of Plant Pathology 97: 387–389.

    Google Scholar 

  • Caruthers, J.M., and D.B. McKay. 2002. Helicase structure and mechanism. Current Opinion in Structural Biology 12: 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Chenon, M., L. Camborde, S. Cheminant, and I. Jupin. 2012. A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity. The EMBO Journal 31: 741–753.

    Article  CAS  PubMed  Google Scholar 

  • Coetzee, B., M.J. Freeborough, H.J. Maree, J.M. Celton, D.J.G. Rees, and J.T. Burger. 2010. Deep sequencing analysis of viruses infecting grapevines: Virome of a vineyard. Virology 400: 157–163.

    Article  CAS  PubMed  Google Scholar 

  • Davies, Christopher, Graham Hills, and David C. Baulcombe. 1993. Sub-cellular localization of the 25-kDa protein encoded in the triple gene block of potato virus X. Virology 197(1): 166–175.

    Article  CAS  PubMed  Google Scholar 

  • Fan, X.D., Y.F. Dong, Z.P. Zhang, F. Ren, G.J. Hu, and H.J. Zhu. 2013. RT-LAMP assay for detection of Grapevine rupestris stem pitting-associated virus. Acta Phytopathologica Sinica 43: 286–293.

    Google Scholar 

  • Fattouh, F., C. Ratti, A.M.D. El Ahwany, E. Abdel Aleem, A.R. Babin, and C.R. Autonell. 2014. Detection and molecular characterization of Egyptian isolates of grapevine viruses. Acta Virologica 58: 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Gambino, G. 2012. Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis. Journal of Experimental Botany 63: 5919–5933.

    Article  CAS  PubMed  Google Scholar 

  • Gambino, G., J. Bondaz, and I. Gribaudo. 2006. Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. European Journal of Plant Pathology 114: 397–404.

    Article  Google Scholar 

  • Giampetruzzi, Annalisa, Vahid Roumi, Roberta Roberto, Umberto Malossini, Nobuyuki Yoshikawa, Pierfederico La Notte, Federica Terlizzi, Rino Credi, and Pasquale Saldarelli. 2012. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in Cv Pinot gris. Virus Research 163(1): 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Goheen, A.C. 1989. Virus diseases and grapevine selection. American Journal of Enology and Viticulture 40: 67–72.

    Google Scholar 

  • Goszczynski, D. 2010. Rugose wood-associated viruses do not appear to be involved in Shiraz (Syrah) decline in South Africa. Archives of Virology 155: 1463–1469.

    Article  CAS  PubMed  Google Scholar 

  • Gribaudo, I., G. Gambino, and R. Vallania. 2004. Somatic embryogenesis from grapevine anthers: The optimal developmental stage for collecting explants. American Journal of Enology and Viticulture 55: 427–430.

    Google Scholar 

  • Gribaudo, L., G. Gambino, D. Cuozzo, and F. Mannini. 2006. Attempts to eliminate Grapevine rupestris stem pitting-associated virus from grapevine clones. Journal of Plant Pathology 88: 293–298.

    Google Scholar 

  • Habili, N. 2015. Failure to detect Grapevine rupestris stem pitting-associated virus in Iran may give a clue to the origin of this virus. Proceedings of the 18th Congress of ICVG. Ankara, Sept 7–11, 2015.

    Google Scholar 

  • Habili, N., N. Farrokhi, M.F. Lima, P. Nicholas, and J.W. Randles. 2006. Distribution of Rupestris stem pitting-associated virus variant in two Australian vineyards showing different symptoms. Annals of Applied Biology 148: 91–96.

    Article  Google Scholar 

  • Habili, N, A. Yazarlou, J. Randles. 2012. First report of the detection of grapevine virus and viroid RNA in bottled wines. Proceedings of the 17th Congress of ICVG. Davis, CA, USA, Oct 7–114, 2012.

    Google Scholar 

  • Hooker, J.. 2017. Analysis of the genetic diversity of Grapevine rupestris stem pitting-associated virus in Ontarian vineyards and construction of a full-length infectious clone. M.Sc. Thesis. University of Guelph.

    Google Scholar 

  • Howard, A.R., M.L. Heppler, J.J. Ju, K. Krishnamurthy, M.E. Payton, and J. Verchot-Lubicz. 2004. Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves. Virology 328: 185–197.

    Google Scholar 

  • Hu, G.J., Y.F. Dong, H.J. Zhu, Z.P. Zhang, X.D. Fan, F. Ren, and J. Zhou. 2015. Molecular characterization of two grapevine rupestris stem pitting-associated virus isolates from China. Archives of Virology 160: 2641–2645.

    Article  CAS  PubMed  Google Scholar 

  • Jakubiec, A., G. Drugeon, L. Camborde, and I. Jupin. 2007. Proteolytic processing of turnip yellow mosaic virus replication proteins and functional impact on infectivity. Journal of Virology 81: 11402–11412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadare, G., and A.-L. Hainni. 1997. Virus-encoded RNA helicases. Journal of Virology 71: 2583–2590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadare, G., M. Rozanov, and A.-L. Haenni. 1995. Expression of the turnip yellow mosaic virus proteinase in Escherichia coli and determination of the cleavage site within the 206 kDa protein. Journal of General Virology 76: 2853–2857.

    Article  CAS  PubMed  Google Scholar 

  • King, A.M.Q., M.J. Adams, E.B. Carstens, and E.J. Lefkowitz. 2012. Virus taxonomy: 9th report of the international committee on the taxonomy of viruses. San Diego: Academic Press/Elsevier.

    Google Scholar 

  • Komar, V., E. Vigne, G. Demangeat, and M. Fuchs. 2007. Beneficial effect of selective virus elimination on the performance of Vitis vinifera cv. Chardonnay. American Journal of Enology and Viticulture 58: 202–210.

    Google Scholar 

  • Koonin, E.V., and V.V. Dolja. 1993. Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of animo acid sequences. Critical Reviews in Biochemistry and Molecular Biology 28: 375–430.

    Article  CAS  PubMed  Google Scholar 

  • Kundu, J.K., M. Duchacova, and M. Jokes. 2006. Cytopathology of Apple stem pitting virus in Nicotiana occidentalis L. Biologia, Bratislava 61: 469–471.

    Article  Google Scholar 

  • Lawrence, D., M. Rozanov, and B. Hillman. 1995. Autocatalytic processing of the 223 kDa protein of Blueberry scorch Carlavirus by a papain-like proteinase. Virology 207: 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Lima, M.F., R. Alkowni, J.K. Uyemoto, D. Golino, F. Osman, and A. Rowhani. 2006a. Molecular analysis of a California strain of Rupestris stem pitting associated virus isolated from declining Syrah grapevines. Archives of Virology 151: 1889–1894.

    Article  CAS  PubMed  Google Scholar 

  • Lima, MF, C. Rosa, D.A. Golino, A. Rowhani. 2006b. Detection of Rupestris stem pitting associated virus in seedlings of virus-infected material grapevine plants. In Extended Abstracts of the 15th Meeting of the ICVG. Stellenbosch, South Africa. Apr 3–7, 2006, 244–245.

    Google Scholar 

  • Lima, M., R. Alkowni, J.K. Uyemoto, and A. Rowhani. 2009. Genome study and detection of a new variant of Grapevine rupestris stem pitting associated virus in declining California Pinot Noir grapevines. Journal of Plant Pathology 91: 155–162.

    CAS  Google Scholar 

  • Liu, L., W.M. Westler, J.A. den Boon, X. Wang, A. Diaz, H.A. Steinberg, and P. Ahlquist. 2009. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function. PLoS Pathogens 5: e1000351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucas, W.J. 1998. Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Molecular Plant-Microbe Interactions 11: 801–814.

    Google Scholar 

  • Lough, T.J., K. Shash, B. Xoconostle-Cázares, K.R. Hofstra, D.L. Beck, E. Balmori, R.L.S. Forster, and W.J. Lucas. 1998. Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Molecular Plant-Microbe Interactions 11(8): 801–814.

    Google Scholar 

  • Lunden, Shaista, Baozhong Meng, John Avery, and Wenping Qiu. 2010. Association of Grapevine fanleaf virus, Tomato ringspot virus and Grapevine rupestris stem pitting-associated virus with a grapevine vein-clearing complex on var Chardonnay. European Journal of Plant Pathology 126(2): 135–144.

    Article  Google Scholar 

  • Makarova, K.S., L. Aravind, and E.V. Koonin. 2000. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends in Biochemical Sciences 25: 50–52.

    Article  CAS  PubMed  Google Scholar 

  • Martelli, G.P. 1993. Rugose wood complex. In Graft-transmissible diseases of grapevines, handbook for detection and diagnosis, ed. G.P. Martelli, 45–54. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Martelli, G.P., and W. Jelkmann. 1998. Foveavirus, a new plant virus genus. Archives of Virology 143: 1245–1249.

    Article  CAS  PubMed  Google Scholar 

  • Martelli, G.P., M.J. Adams, J.F. Kreuze, and V.V. Dolja. 2007. Family Flexiviridae: A case study in virion and genome plasticity. Annual Review of Phytopathology 45: 73–100.

    Article  CAS  PubMed  Google Scholar 

  • Meng, B., and D. Gonsalves. 2003. Rupestris stem pitting-associated virus of grapevines: Genome structure, genetic diversity, detection, and phylogenetic relationship to other plant viruses. Research Trends. Current Topics in Virology 3: 125–135.

    CAS  Google Scholar 

  • ———. 2007. Grapevine rupestris stem pitting-associated virus: A decade of research and future perspectives. Plant Viruses 1: 52–62.

    Google Scholar 

  • ———. 2008. Grapevine rupestris stem pitting-associated virus. In Characterization, diagnosis and management of plant viruses, ed. G. Rao, K.S. Ling, and A. Myrta, 201–222. Houston: Studium Press, LLC.

    Google Scholar 

  • Meng, B., and C. Li. 2010. The capsid protein of Grapevine rupestris stem pitting-associated virus contains a typical nuclear localization signal and targets to the nucleus. Virus Research 153: 212–217.

    Article  CAS  PubMed  Google Scholar 

  • Meng, B., S.-Z. Pang, P.L. Forsline, J.R. McFerson, and D. Gonsalves. 1998. Nucleotide sequence and genome structure of grapevine rupestris stem pitting associated virus-1 reveal similarities to apple stem pitting virus. Journal of General Virology 79: 2059–2069.

    Article  CAS  PubMed  Google Scholar 

  • Meng, B., R. Johnson, S. Peressini, P.L. Forsline, and D. Gonsalves. 1999a. Rupestris stem pitting associated virus-1 is consistently detected in rupestris stem pitting-infected grapevines. European Journal of Plant Pathology 105: 191–199.

    Article  CAS  Google Scholar 

  • Meng, B., H.-Y. Zhu, and D. Gonsalves. 1999b. Rupestris stem pitting associated virus-1 consists of a family of sequence variants. Archives of Virology 144: 2071–2085.

    Article  CAS  PubMed  Google Scholar 

  • Meng, B, R. Credi, N. Petrovic, D. Gonsalves. 2000. Serological detection of RSPaV in grapes as compared to RT-PCR and indicator indexing. In Extended Abstracts of the 13th Meeting of the ICVG, Adelaide, South Australia. Mar 12–18, 2000, 131–132.

    Google Scholar 

  • Meng, B., R. Credi, N. Petrovic, I. Tomazic, and D. Gonsalves. 2003. Antiserum to recombinant virus coat protein detects Rupestris stem pitting associated virus in grapevines. Plant Disease 87: 515–522.

    Article  CAS  Google Scholar 

  • Meng, B., C. Li, W. Wang, D. Goszczynski, and D. Gonsalves. 2005. The complete genome sequences of two new variants of Grapevine rupestris stem pitting associated virus and comparative analyses. Journal of General Virology 86: 1555–1560.

    Article  CAS  PubMed  Google Scholar 

  • Meng, B., A.R. Rebelo, and H. Fisher. 2006. Genetic diversity analysis of Grapevine rupestris stem pitting-associated virus: Revelation of distinct population structures in scion versus rootstock varieties. Journal of General Virology 87: 1725–1733.

    Article  CAS  PubMed  Google Scholar 

  • Meng, B., S. Venkataraman, C. Li, W. Wang, C. Dayan-Glick, and M. Mawassi. 2013. Construction and biological activities of the first infectious cDNA clones of the genus Foveavirus. Virology 435: 453–462.

    Article  CAS  PubMed  Google Scholar 

  • Minafra, A., P. Casati, V. Elicio, A. Rowhani, P. Saldarelli, V. Savino, and G.P. Martelli. 2000. Serological detection of grapevine rupestris stem pitting-associated virus (GRSPaV) by a polyclonal antiserum to recombinant virus coat protein. Vitis 39: 115–118.

    CAS  Google Scholar 

  • Morelli, M., A. Minafra, D. Boscia, and G.P. Martelli. 2011. Complete nucleotide sequence of a new variant of grapevine rupestris stem pitting-associated virus from southern Italy. Archives of Virology 156: 543–546.

    Article  CAS  PubMed  Google Scholar 

  • Morozov, S.Y., and A.G. Solovyev. 2003. Triple gene block: Modular design of a multifunctional machine for plant virus movement. Journal of General Virology 84: 1351–1366.

    Article  CAS  PubMed  Google Scholar 

  • Mslmanieh, T, M. Digiaro, T. Elbeaino, D. Boscia, G.P. Martelli. 2006. A preliminary survey of grapevine viruses in Syria. In Extended Abstracts of the 15th Meeting of the ICVG, Stellenbosch, South Africa. Apr 3–7, 2006, 189–190.

    Google Scholar 

  • Nagy, P.D., and J. Pogany. 2008. Multiple roles of viral replication proteins in plant RNA virus replication. Methods in Molecular Biology 451: 55–68.

    Article  CAS  PubMed  Google Scholar 

  • Nakaune, R, K. Inoue, H. Nasu, K. Kakogawa, H. Nitta, M. Nakano. 2006. Etiology of rugose wood disease in Japanese grapevines. In Extended Abstracts of the 15th Meeting of the ICVG, Stellenbosch, South Africa. Apr. 3–7, 2006, 237–238.

    Google Scholar 

  • Nakaune, Ryoji, Koji Inoue, Hideo Nasu, Katsura Kakogawa, Hiromichi Nitta, Jun Imada, and Masaaki Nakano. 2008. Detection of viruses associated with rugose wood in Japanese grapevines and analysis of genomic variability of Rupestris stem pitting-associated virus. Journal of General Plant Pathology 74(2): 156–163.

    Article  CAS  Google Scholar 

  • Nassuth, A., E. Pollari, K. Helmeczy, S. Stewart, and S.A. Kofalvi. 2000. Improved RNA extraction and one-tube RT-PCR assay for simultaneous detection of control plant RNA plus several viruses in plant extracts. Journal of Virological Methods 90: 37–49.

    Article  CAS  PubMed  Google Scholar 

  • Nolasco, G., A. Mansinho, M. Teixeira Santos, C. Soares, Z. Sequeira, C. Sequeira, P.K. Correia, and O.A. Sequeira. 2000. Large scale evaluation of primers for diagnosis of rupestris stem pitting associated virus-1. European Journal of Plant Pathology 106: 311–318.

    Article  CAS  Google Scholar 

  • Nolasco, G., C. Santos, N. Petrovic, M. Teixeira Santos, I. Cortez, F. Fonseca, J. Boben, A.M. Nazare Pereira, and O. Sequeria. 2006. Rupestris stem pitting associated virus (RSPaV) isolates are composed by mixtures of genomic variants which share a highly conserved coat protein. Archives of Virology 151: 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Osman, F., T. Olinka, E. Hodzic, D. Golino, and A. Rowhani. 2012. Comparative procedures for sample processing and quantitative PCR detection of grapevine viruses. Journal of Virological Methods 179: 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Petrovic, N., B. Meng, M. Ravnikar, I. Mavric, and D. Gonsalves. 2003. First detection of Rupestris stem pitting associated virus particles in grapevine using the antibody to the recombinant coat protein. Plant Disease 87: 510–514.

    Article  CAS  Google Scholar 

  • Poorari, S., O.J. Alabi, Y. Fofanov, and R.A. Naidu. 2013. A leafhopper-transmissible DNA virus with novel evolutionary lineage in the family Geminiviridae implicated in grapevine redleaf disease by next-generation sequencing. PLoS ONE 8(6), e64194.

    Article  Google Scholar 

  • Prosser, S.W., D.E. Goszczynski, and B. Meng. 2007. Molecular analysis of viral double-stranded RNAs reveals complex infection of grapevines with multiple viruses. Virus Research 124: 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Prosser, S., H. Xiao, C. Li, R.S. Nelson, and B. Meng. 2015. Subcellular localization and membrane association of the replicase protein of Grapevine rupestris stem pitting-associated virus, family Betaflexiviridae. Journal of General Virology 96: 921–932.

    Article  CAS  PubMed  Google Scholar 

  • Rebelo, Ana Rita, Stella Niewiadomski, Sean W. Prosser, Peter Krell, and Baozhong Meng. 2008. Subcellular localization of the triple gene block proteins encoded by a foveavirus infecting grapevines. Virus Research 138(1–2): 57–69.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, A.G., W.W. Lanterman, and D.A. Wardle. 1997. Yield and berry composition of five Vitis cultivars as affected by rupestris stem pitting virus. American Journal of Enology and Viticulture 48: 449–458.

    Google Scholar 

  • Rowhani, A, Y.P. Zhang, H. Chin, A. Minafra, D.A. Golino, J.K. Uyemoto. 2000. Grapevine rupestris stem pitting associated virus: Population diversity, titer in the host and possible transmission vector. In Extended Abstracts of the 13th Meeting of the ICVG, University of Adelaide, Alelaide, South Australia, Mar 12–18, 37.

    Google Scholar 

  • Rozanov, M.N., E.V. Koonin, and A.E. Gorbalenya. 1992. Conservation of the putative methyltransferase domain: A hallmark of the ‘Sindbis-like.’ supergroup of positive-strand RNA viruses. Journal of General Virology 73: 2129–2134.

    Article  CAS  PubMed  Google Scholar 

  • Salonen, A., T. Ahola, and L. Ka¨a¨ria¨inen. 2004. Viral RNA replication in association with cellular membranes. Current Topics in Microbiology and Immunology 285: 139–173.

    Google Scholar 

  • Scholthof, H.B. 1999. Rapid delivery of foreign genes into plants by direct rub-inoculation with intact plasmid DNA of a Tomato bushy stunt virus gene vector. Journal of Virology 73: 7823–7829.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Y.F., S.J. Wang, J.H. Zhao, J.K. Zhang, Z.H. Lu, X.B. Lu, H.W. Sun, and C.L. Yang. 2009. Detection of Grapevine rupestris stem pitting-associated virus occurred in Shandong province. Journal of Fruit Science 26: 158–162.

    CAS  Google Scholar 

  • Skiada, F.G., V.I. Maliogka, N.I. Katis, and E.P. Eleftheriou. 2013. Elimination of Grapevine rupestris stem pitting-associated virus (GRSPaV) from two Vitis vinifera cultivars by in vitro chemotherapy. European Journal of Plant Pathology 135: 07–414.

    Article  Google Scholar 

  • Soultanas, P., and D.B. Wigley. 2001. Unwinding the “Gordian knot.” of helicase action. Trends in Biochemical Sciences 26: 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Spuul, P., A. Salonen, A. Merits, E. Jokitalo, L. Kaariainen, and T. Ahola. 2006. Role of the amphipathic peptide of Semliki forest virus replicase protein nsP1 in membrane association and virus replication. Journal of Virology 81(2): 872–883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart, S., and A. Nassuth. 2001. RT-PCR based detection of Rupestris stem pitting associated virus within field-grown grapevines throughout the year. Plant Disease 85: 617–620.

    Article  Google Scholar 

  • Strauss, J.H., and E.G. Strauss. 1994. The Alphaviruses: Gene expression, replication, and evolution. Microbiological Reviews 58: 491–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terlizzi, F., C. Ratti, G. Filippini, A. Pisi, and R. Credi. 2010. Detection and molecular characterization of Italian isolates. Plant Pathology 59(1): 48–58.

    Article  CAS  Google Scholar 

  • Terlizzi, F., C. Li, C. Ratti, W. Qu, R. Credi, and B. Meng. 2011. Detection of multiple sequence variants of Grapevine rupestris stem pitting-associated virus using primers targeting the polymerase domain and partial genome sequencing of a novel variant. Annals of Applied Biology 159: 478–490.

    Article  CAS  Google Scholar 

  • Tzeng, H.C., D.D. Tzeng, and A.C. Goheen. 1993. Anatomical and tissue culture studies of Rupestris stem pitting-affected grapevines. Botanical Bulletin Academia Sinica 34: 73–82.

    Google Scholar 

  • Udaskin, M.L. 2016. Investigation into the proteolytic processing and localization of the replicase polyprotein of Grapevine rupestris stem pittingassociated virus. M.Sc. Thesis. The University of Guelph, Guelph, Ontario, Canada.

    Google Scholar 

  • Verchot-Lubicz, J. 2005. A new cell-to-cell transport model for Potexviruses. Molecular Plant-Microbe Interactions 18: 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Walter, M., and H.R. Cameron. 1991. Double-stranded RNA isolated from grapevines affected by rupestris stem pitting disease. American Journal of Enology and Viticulture 42: 175–179.

    CAS  Google Scholar 

  • Wang, Y.S., C.M. Motes, D.R. Mohamalawari, and E.B. Blancaflor. 2004. Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motility and the Cytoskeleton 59: 9–93.

    Article  Google Scholar 

  • Waigmann, E, M. Curin, and M. Heinlein. 2007. Tobacco mosaic virus – A model for macromolecular cell-to-cell spread. Plant Cell Monograph 7: 29–62. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Xiao, H., W.S. Kim, and B. Meng. 2015. Comparison and improvement of methodologies for isolation of quality RNA from diverse woody plant species and utilization in detection of viral pathogens. Virology Journal 12: 171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao, H., M. Shabanian, W. McFadden-Smith, and B. Meng. 2016. First report of Grapevine Pinot gris virus in commercial grapevines in Canada. Plant Disease 100: 1030.

    Article  Google Scholar 

  • Zhang, Y.P., J.K. Uyemoto, D.A. Golino, and A. Rowhani. 1998. Nucleotide sequence and RT-PCR detection of a virus associated with grapevine rupestris stem-pitting disease. Phytopathology 88: 1231–1237.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

BM would like to thank Dr. Dennis Gonsalves for providing the precious opportunity to pursue Ph.D. studies at Cornell University and for the guidance and mentorship he has provided over the years. The generous help from numerous collaborators and colleagues on various projects is much appreciated. Sincere gratitude also goes to Mr. Clayton Moore for the help with phylogenetic analyses and the construction of phylogenetic trees, as well as to past and current members of the Meng lab, for their valuable contributions to the research on GRSPaV. Research in the Meng laboratory has been funded by Natural Science and Engineering Council of Canada through the Discovery, Special Opportunity, and Engage programs and by the OMAFRA-UoG Partnerships program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Meng, B., Rowhani, A. (2017). Grapevine rupestris stem pitting-associated virus . In: Meng, B., Martelli, G., Golino, D., Fuchs, M. (eds) Grapevine Viruses: Molecular Biology, Diagnostics and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-57706-7_12

Download citation

Publish with us

Policies and ethics