Analytical Study and Performance Evaluation of Medical Image Watermarking Techniques

  • Amit Kumar SinghEmail author
  • Basant Kumar
  • Ghanshyam Singh
  • Anand Mohan
Part of the Multimedia Systems and Applications book series (MMSA)


This chapter presents the important techniques of watermarking in spatial and transform domains along with major performance parameters such as peak signal to noise ratio (PSNR), weighted peak signal-to-noise ratio (WPSNR), mean square error (MSE), universal image quality index, structural similarity index measure (SSIM), normalized correlation (NC), noise visibility function (NVF) and bit error rate (BER) of the watermark algorithm. An important aspect of any watermarking algorithm is its robustness against attacks. Recently, some standard benchmark tools are available to determine the robustness of watermarking algorithm. Further, the chapter introduces an overview of different types of attacks and benchmark tools for medical image watermarking.


Spatial and transform domains techniques DWT DCT SVD PSNR BER Attacks Benchmark tools StirMark CheckMark Optimark and Certimark 


  1. 1.
    D. Arya, A survey of frequency and wavelet domain digital watermarking techniques. Int. J. Sci. Eng. Res. 1(2), 1–4 (2010)MathSciNetGoogle Scholar
  2. 2.
    C. Shoemaker, Hidden Bits: A Survey of Techniques for Digital Watermarking, Independent Study (Spring, 2002)Google Scholar
  3. 3.
    O. Bruyndonckx, J.J. Quisquater, B. Macq, Spatial method for copyright labeling of digital images, in Proceeding of IEEE Workshop on Nonlinear Signal and Image Processing, Neos Marmaras, Greece, pp. 456–459, 1995Google Scholar
  4. 4.
    N. Nikolaidis, I. Pitas, Robust image watermarking in the spatial domain. Signal Process. 66(3), 385–403 (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    A.K. Singh, N. Sharma, M. Dave, A. Mohan, A novel technique for digital image watermarking in spatial domain, in Proceeding of 2nd International Conference on Parallel Distributed and Grid Computing, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India, pp. 497–501, 2012Google Scholar
  6. 6.
    G. Langelaar, I. Setyawan, R. Lagendijk, Watermarking digital image and video data: a state-of-art overview. IEEE Signal Process. Mag. 17(5), 20–46 (2000)CrossRefGoogle Scholar
  7. 7.
    A.K. Parthasarathy, S. Kak, An improved method of content based image watermarking. IEEE Trans. Broadcast. 53(2), 468–479 (2007)CrossRefGoogle Scholar
  8. 8.
    I.J. Cox, J. Kilian, F.T. Leighton, T. Shamoon, Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  9. 9.
    B. Kumar, H.V. Singh, S.P. Singh, A. Mohan, Secure spread-spectrum watermarking for telemedicine applications. J. Inf. Secur. 2(2), 91–98 (2011)Google Scholar
  10. 10.
    W. Bender, D. Gruhl, N. Morimoto, Techniques for data hiding, in Proceedings of the SPIE 2420, Storage and Retrieval for Image and Video Databases III, pp. 164–173, 1995Google Scholar
  11. 11.
    G.C. Langelaar, J.C.A. Van der Lubbe, R.L. Lagendijk, Robust labeling methods for copy protection of images, in Proceedings of SPIE 3022, Storage and Retrieval for Image and Video Databases V, pp. 298–309, 1997Google Scholar
  12. 12.
    I. Pitas, T.H. Kaskalis, Applying signatures on digital images, in IEEE Workshop on Nonlinear Signal and Image Processing, Thessaloniki, Greece, pp. 460–463, 1995Google Scholar
  13. 13.
    K.T. Lin, Digital image hiding in an image using n-graylevel encoding, in Proceeding of 1st International Conference on Information Science and Engineering, IEEE Computer Society, Washington, DC, USA, pp. 1720–1724, 2009Google Scholar
  14. 14.
    R. Chellappa, S. Theodoridis, Academic Press Library in Signal Processing: Signal Processing Theory and Machine Learning, vol 1 (Elsevier, 2014)Google Scholar
  15. 15.
    A.K. Singh, M. Dave, A. Mohan, Hybrid technique for robust and imperceptible multiple watermarking using medical images. J. Multimedia Tools Appl. 75(14), 8381–8401 (2015). doi: 10.1007/s11042-015-2754-7 CrossRefGoogle Scholar
  16. 16.
    C.-C. Lai, C.-C. Tsai, Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Trans. Instrum. Meas. 59(11), 3060–3063 (2010)CrossRefGoogle Scholar
  17. 17.
    D.T.L. Lee, A. Yamamoto, Wavelet analysis: theory and applications. Hewlett-Packard J. 5, 44–52 (1994)Google Scholar
  18. 18.
    M.K. Gupta, S. Tiwari, Performance evaluation of conventional and wavelet based OFDM system. AEU—Int. J. Electron. Commun. 67(4), 348–354 (2013)Google Scholar
  19. 19.
    A. Giakoumaki, S. Pavlopoulos, D. Koutsouris, Secure and efficient health data management through multiple watermarking on medical images. Med. Biol. Eng. Comput. 44(8), 619–631 (2006)CrossRefGoogle Scholar
  20. 20.
    P. Meerwald, A. Uhl, Survey of wavelet-domain watermarking algorithms, in Proceedings of the SPIE Security and Watermarking of Multimedia Contents III, San Jose, pp. 505–516, 2001Google Scholar
  21. 21.
    G. Carl, R.R. Brooks, S. Rai, Wavelet based denial-of-service detection. Comput. Security 25(8), 600–615 (2006)CrossRefGoogle Scholar
  22. 22.
    A.H. Paquet, R.K. Ward, Wavelet-based digital watermarking for authentication, in Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Winnipeg, pp. 879–884, 2002Google Scholar
  23. 23.
    X.-y. Chen, Y.-y. Zhan, Multi-scale anomaly detection algorithm based on infrequent pattern of time series. J. Comput. Appl. Math. 214(1), 227–237 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    M. Do, M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)CrossRefGoogle Scholar
  25. 25.
    G. Jianwei Ma, Plonka, The curvelet transform. IEEE Signal Process. Mag. 27(2), 118–133 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Al-Haj, Combined DWT–DCT digital image watermarking. J. Comput. Sci. 3(9), 740–746 (2007)CrossRefGoogle Scholar
  27. 27.
    J.R. Hernandez, M. Amado, F. Perez-Gonzalez, DCT-Domain watermarking techniques for still images: detector performance analysis and a new structure. IEEE Trans. Image Process. 9(1), 55–68 (2000)CrossRefGoogle Scholar
  28. 28.
    K. Viswanath, J. Mukherjee, P.K. Biswas, Image filtering in the block DCT domain using symmetric convolution. J. Vis. Commun. Image Represent. 22(2), 141–152 (2011)CrossRefGoogle Scholar
  29. 29.
    D. Kalman, A singularly valuable decomposition: the SVD of a matrix, The American University, February 13, 2002Google Scholar
  30. 30.
    A. Poljicak, L. Mandic, D. Agic, Discrete Fourier transform–based watermarking method with an optimal implementation radius. J. Electron. Imaging 20(3), 033008 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Cheddad, J. Condell, K. Curran, M. Kevitt, Digital image steganography: survey and analysis of current methods. Signal Process. 90, 727–752 (2010)CrossRefzbMATHGoogle Scholar
  32. 32.
    Z. Wang, A.C. Bovik, Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26, 98–117 (2009)CrossRefGoogle Scholar
  33. 33.
    A.K. Singh, B. Kumar, M. Dave, S.P. Ghrera, A. Mohan, Digital image watermarking: techniques and emerging applications, in Handbook of Research on Modern Cryptographic Solutions for Computer and Cyber Security, (IGI Global, Hershey, 2016), pp. 246–272Google Scholar
  34. 34.
    Z. Wang, A.C. Bovik, A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)CrossRefGoogle Scholar
  35. 35.
    A.K. Singh, Improved hybrid technique for robust and imperceptible multiple watermarking using medical images. Multimedia Tools Appl. 76(6), 8881–8900 (2017)Google Scholar
  36. 36.
    S. Voloshynovskiy, S. Pereira, V. Iquise, T. Pun, Attack modelling: towards a second generation watermarking benchmark. Signal Process. 81(6), 1177–1214 (2001)CrossRefzbMATHGoogle Scholar
  37. 37.
    S. Voloshynovskiy, S. Pereira, T. Pun, J.J. Eggers, J.K. Su, Attacks on digital watermarks: classification, estimation-based attacks and benchmarks. IEEE Commun. Mag. 39, 118–126 (2001)CrossRefGoogle Scholar
  38. 38.
    C. Song, S. Sudirman, M. Merabti, D. Llewellyn-Jones, Analysis of digital image watermark attacks, in 7th IEEE Consumer Communications and Networking Conference, Las Vegas, Nevada, USA, pp. 941–945, January 09–12, 2010Google Scholar
  39. 39.
    H. Nyeem, W. Boles, C. Boyd, Digital image watermarking: its formal model, fundamental properties and possible attacks. EURASIP J. Adv. Signal Process. 135, 1–22 (2014)Google Scholar
  40. 40.
    H. Wang, A.T.S. Ho, S. Li, OR-benchmark: an open and reconfigurable digital watermarking benchmarking framework, June 02, 2015Google Scholar
  41. 41.
    F.A.P. Petitcolas, M. Steinebach, F. Raynal, J. Dittman, C. Fontaine, N. Fates, in A Public Automated Web-Based Evaluation Service for Watermarking Schemes: Stir Mark Benchmark, ed. by P.W. Wong, E.J. Delp. Proceedings of the SPIE/IS&T Conference on Security and Watermarking of Multimedia Contents, San Jose, CA, vol. 4314, 2001Google Scholar
  42. 42.
    F.A.P. Petitcolas, R.J. Anderson, M.G. Kuhn, Attacks on copyright marking systems, in Information Hiding, Second International Workshop, ed. by D. Aucsmith (Ed), (Springer-Verlag, Portland, OR, 1998), pp. 219–239Google Scholar
  43. 43.
    F.A.P. Petitcolas, Watermarking schemes evaluation. IEEE Signal Process. Mag. 17(5), 58–64 (2000)CrossRefGoogle Scholar
  44. 44.
  45. 45.
    S. Pereira, S. Voloshynovskiy, M. Maduẽno, S. Marchand-Maillet, T. Pun, Second generation benchmarking and application oriented evaluation, in Information Hiding Workshop, Pittsburgh, PA, 2001Google Scholar
  46. 46.
    V. Solachidis, A. Tefas, N. Nikolaidis, S. Tsekeridou, A. Nikolaidis, P. Pitas, A benchmarking protocol for watermarking methods, in Proceedings of the IEEE International Conference on Image Processing, vol. 3, Thessaloniki, Greece, pp. 1023–1026, 2001Google Scholar
  47. 47.
  48. 48.
    J.C. Vorbruggen, F. Cayre, The Certimark benchmark: architecture and future perspectives, in Proceedings of 2002 IEEE International Conference on Multimedia and Expo (ICME 2002), vol. 2, pp. 485–488, 2002Google Scholar
  49. 49.
    H.C. Kim, H. Ogunleye, O. Guitart, E.J. Delp, The watermark evaluation test bed (WET). Proc. SPIE 5306, 236–247 (2004)CrossRefGoogle Scholar
  50. 50.
    H.C. Kim, E.T. Lin, O. Guitart, E.J.D. III, Further progress in watermark evaluation test bed (WET). Proc. SPIE 5681, 241–251 (2005)CrossRefGoogle Scholar
  51. 51.
    O. Guitart, H. C. Kim, and E. J. D. III, “The watermark evaluation testbed (WET): new functionalities,” in Proc. SPIE, vol. 6072. 2006, art. no. 60721O.Google Scholar
  52. 52.
    S. Lugan, B. Macq, Thread-based benchmarking deployment. Proc. SPIE 5306, 248–255 (2004)CrossRefGoogle Scholar
  53. 53.
    B. Michiels, B. Macq, Benchmarking image watermarking algorithms with open watermark, in Proceedings of 14th European Signal Processing Conference, Florence, Italy, pp. 1–5, 2006Google Scholar
  54. 54.
    K. Wang, G. Lavoue, F. Denis, A. Baskurt, X. He, A benchmark for 3D mesh watermarking, in Proceedings of 2010 IEEE International Conference on Shape Modeling and Applications (SMI 2010), pp. 231–235, 2010Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amit Kumar Singh
    • 1
    Email author
  • Basant Kumar
    • 2
  • Ghanshyam Singh
    • 3
  • Anand Mohan
    • 4
  1. 1.Department of Computer Science & EngineeringJaypee University of Information TechnologyWaknaghat, SolanIndia
  2. 2.Department of Electronics and Communication EngineeringMotilal Nehru National Institute of TechnologyAllahabadIndia
  3. 3.Department of Electronics and Communication EngineeringJaypee University of Information TechnologyWaknaghat, SolanIndia
  4. 4.Department of Electronics EngineeringIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations