State-of-the-Art Techniques of Image Watermarking: New Trends and Future Challenges

  • Amit Kumar SinghEmail author
  • Basant Kumar
  • Ghanshyam Singh
  • Anand Mohan
Part of the Multimedia Systems and Applications book series (MMSA)


This chapter provides an extensive view about the state-of-the-art watermarking techniques for different applications and environments. It includes watermarking for e-health, cloud computing and multi-cores environment, cryptography, biometric watermarking, watermarking for mobile devises, 3D model watermarking and other perspectives. The chapter also reviews several aspects about digital watermarking in different domain. Meanwhile, it discusses the requirements and potential challenges that the watermarking process face. Finally, summary of various watermarking techniques is presented in tabular format.


E-health Cryptography Biometric watermarking Mobile devises 3D model 


  1. 1.
    G. Bhatnagar, Robust covert communication using high capacity watermarking. Multimedia Tools Appl. 76, 3783 (2016). doi: 10.1007/s11042-016-3978-x CrossRefGoogle Scholar
  2. 2.
    A.K. Singh, Some new techniques of improved wavelet domain watermarking for medical images, Ph.D. Thesis, Department of Computer Engineering, NIT Kurukshetra, India, 2015Google Scholar
  3. 3.
    F.N. Thakkar, V.K. Srivastava, A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications. Multimedia Tools Appl. 76(3), 3669–3697 (2016)Google Scholar
  4. 4.
    World Health Organization, Telemedicine opportunities and developments, Report on the second global survey on eHealth, 2010Google Scholar
  5. 5.
    A. Zear, A.K. Singh, P. Kumar, Multiple watermarking for healthcare applications. J. Intell. Syst. (2016). doi: 10.1515/jisys-2016-0036
  6. 6.
    A. Sharma, A.K. Singh, S.P. Ghrera, Robust and secure multiple watermarking technique for medical images. Wirel. Pers. Commun. 92(4), 1611–1624 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Zear, A.K. Singh, P. Kumar, A proposed secure multiple watermarking technique based on DWT, DCT and SVD for application in medicine. Multimedia Tools Appl. (2016). doi: 10.1007/s11042-016-3862-8
  8. 8.
    A.K. Singh, Improved hybrid technique for robust and imperceptible multiple watermarking using medical images. Multimedia Tools Appl. 76(6), 8881–8900 (2017)Google Scholar
  9. 9.
    R. Pandey, A.K. Singh, B. Kumar, A. Mohan, Iris based secure NROI multiple eye image watermarking for teleophthalmology. Multimedia Tools Appl. 75(22), 14381–14397 (2016)Google Scholar
  10. 10.
    A.K. Singh, M. Dave, A. Mohan, Hybrid technique for robust and imperceptible multiple watermarking using medical images. J. Multimedia Tools Appl. 75(14), 8381–8401 (2015)CrossRefGoogle Scholar
  11. 11.
    A.K. Singh, M. Dave, A. Mohan, Multilevel encrypted text watermarking on medical images using spread-spectrum in DWT domain. Wirel. Pers. Commun. 83(3), 2133–2150 (2015)CrossRefGoogle Scholar
  12. 12.
    A.K. Singh, M. Dave, A. Mohan, Robust and secure multiple watermarking in wavelet domain, a special issue on advanced signal processing technologies and systems for healthcare applications (ASPTSHA). J. Med. Imaging Health Inf. 5(2), 406–414 (2015)CrossRefGoogle Scholar
  13. 13.
    A.K. Singh, B. Kumar, M. Dave, A. Mohan, Multiple watermarking on medical images using selective DWT coefficients. J. Med. Imaging Health Inf. 5(3), 607–614 (2015)CrossRefGoogle Scholar
  14. 14.
    A.K. Singh, B. Kumar, M. Dave, A. Mohan, Robust and imperceptible spread-spectrum watermarking for telemedicine applications. Proc. Natl. Acad. Sci., India Sect. A: Phys. Sci. 85(2), 295–301 (2015)CrossRefGoogle Scholar
  15. 15.
    G. Badshah, S.-C. Liew, J.M. Zain, M. Ali, Watermark compression in medical image watermarking using lempel-ziv-welch (LZW) lossless compression technique. J. Digit. Imaging 29(2), 216–225 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Rahimi, H. Rabbani, A dual adaptive watermarking scheme in contourlet domain for DICOM images. Biomed. Eng. Online 10, 53 (2011). doi: 10.1186/1475-925X-10-53 CrossRefGoogle Scholar
  17. 17.
    O.M. Al-Qershi, B.E. Khoo, Authentication and data hiding using a hybridROI-based watermarking scheme for DICOM images. J. Digit. Imaging 24(21), 114–125 (2011)CrossRefGoogle Scholar
  18. 18.
    C.K. Tan, J.C. Ng, X. Xu, C.L. Poh, Y.L. Guan, K. Sheah, Security protection of DICOM medical images using dual-layer reversible watermarking with tamper detection capability. J. Digit. Imaging 24(3), 528–540 (2011)CrossRefGoogle Scholar
  19. 19.
    H. Rahmani, R. Mortezaei, M.E. Moghaddam, A new lossless watermarking scheme based on DCT coefficients, in 6th International Conference on Digital Content, Multimedia Technology and its Applications, Seoul, Korea (South), pp. 28–33, ISBN: 978-1-4244-7607-7, 2010Google Scholar
  20. 20.
    H.H. Tsai, H.C. Tseng, Y.S. Lai, Robust lossless image watermarking based on α-trimmed mean algorithm and support vector machine. J. Syst. Softw. 83(6), 1015–1028 (2010)CrossRefGoogle Scholar
  21. 21.
    W. Pan, G. Coatrieux, J. Montagner, N. Cuppens, F. Cuppens, Ch. Roux, Comparison of some reversible watermarking methods in application to medical images, in 31st Annual International Conference of the IEEE EMBS, Minneapolis, Minnesota, USA, 2–6 Sept 2009, pp. 2172–2175Google Scholar
  22. 22.
    I.F. Kallel, M.S. Bouhlel, J.C. Lapayre, Improved Tian’s method for medical image reversible watermarking. GVIP J. 7(2), 1–5 (2007)Google Scholar
  23. 23.
    A. Rocek, K. Slavicek, O. Dostal, M. Javornik, A new approach to fully-reversible watermarking in medical imagingwith breakthrough visibility. Biomed. Signal Process. Control 29, 44–52 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Mašek, R. Burget, J. Karásek, V. Uher, S. Güney, Evolutionary improved object detector for ultrasound images, in 36th International Conference on Telecommunications and Signal processing Rome, Italy, pp. 586–590, 2013Google Scholar
  25. 25.
    R. Eswaraiah, E.S. Reddy, Robust medical image watermarking technique foraccurate detection of tampers inside region of interest and recovering original region of interest. IET Image Process. 9(8), 615–625 (2015)CrossRefGoogle Scholar
  26. 26.
    O.M. Al-Qershi, B.E. Khoo, ROI–based tamper detection and recovery for medical images using reversible watermarking technique, in IEEE International Conference on Information Theory and Information Security, Beijing, pp. 151–155, 2010Google Scholar
  27. 27.
    X.-P. Zhang, K. Li, Comments on “SVD-based watermarking scheme for protecting rightful ownership”. IEEE Trans. Multimedia 7(2), 593–594 (2005)CrossRefGoogle Scholar
  28. 28.
    S.A. Parah, J.A. Sheikh, F. Ahad, N.A. Loan, G.M. Bhat, Information hiding in medical images: a robust medical image watermarking system for E-healthcare. Multimedia Tools Appl. 76(8), 10599–10633 (2017)Google Scholar
  29. 29.
    H. Nyeem, W. Boles, C. Boyd, Content-independent embedding scheme for multi-modal medical image watermarking. Biomed. Eng. Online 14, 7 (2015). doi: 10.1186/1475-925X-14-7 CrossRefGoogle Scholar
  30. 30.
    P. Tsai, Y.C. Hu, H.L. Yeh, Reversible image hiding scheme using predictive coding and histogram shifting. Sig. Process. 89(6), 1129–1143 (2009)CrossRefzbMATHGoogle Scholar
  31. 31.
    S.M. Mousavi, A. Naghsh, S.A.R. Abu-Bakar, Watermarking techniques used in medical images: A survey. J. Digit. Imaging 27(6), 714–729 (2014)CrossRefGoogle Scholar
  32. 32.
    K. Ma, W. Zhang, X. Zhao, N. Yu, F. Li, Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans. Inf. Forensics Secur. 8(3), 553–562 (2013)CrossRefGoogle Scholar
  33. 33.
    X. Zhang, Reversible data hiding in encrypted images. IEEE Signal Process. Lett. 18(4), 255–258 (2011)CrossRefGoogle Scholar
  34. 34.
    W. Hong, T. Chen, H. Wu, An improved reversible data hiding in encrypted images using side match. IEEE Signal Process. Lett. 19(4), 199–202 (2012)CrossRefGoogle Scholar
  35. 35.
    X. Zhang, Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics Security 7(2), 826–832 (2012)CrossRefGoogle Scholar
  36. 36.
    W. Zhang, K. Ma, N. Yu, Reversibility improved data hiding in encrypted images. Signal Process. 94, 118–127 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Zheng, D. Li, D. Hu, D. Ye, J.W. LinaWang, Lossless data hiding for encrypted images with high capacity. Multimedia Tools Appl. 75(21), 13765–13778 (2016)CrossRefGoogle Scholar
  38. 38.
    H.L. Khor, S.-C. Liew, J.M. Zain, Parallel digital watermarking process on ultrasound medical images in multicores environment. Int. J. Biomed. Imaging 2016, 1–14 (2016)CrossRefGoogle Scholar
  39. 39.
    X. Cao, D. Ling, X. Wei, D. Meng, X. Guo, High capacity reversible data hiding in encrypted images by patch-level sparse representation. IEEE Trans. Cybernet. 46(5), 1132–1143 (2016)CrossRefGoogle Scholar
  40. 40.
    M.-W. Chao, C.-h. Lin, Y. Cheng-Wei, T.-Y. Lee, A high capacity 3D steganography algorithm. IEEE Trans. Vis. Comput. Graph. 15(2), 274–284 (2009)CrossRefGoogle Scholar
  41. 41.
    Q.S. Ai, Q. Liu, Z.D. Zhou, L. Yang, S.Q. Xie, A new digital watermarking scheme for 3D triangular mesh models. Signal Process. 89(11), 2159–2170 (2009)CrossRefzbMATHGoogle Scholar
  42. 42.
    R. Ohbuchi, H. Masuda, M. Aono, Data embedding algorithms for geometrical and non-geometrical targets in three-dimensional polygonal models. Comput. Commun. 21(15), 1344–1354 (1998)CrossRefGoogle Scholar
  43. 43.
    R. Ohbuchi, S. Takahashi, T. Miyazawa, A. Mukaiyama, Watermarking 3D polygonal meshes in the mesh spectral domain, in Proceedings of Graphics Interface, San Francisco, 7–9 June 2001, pp. 9–17Google Scholar
  44. 44.
    Y.-P. Wang, H. Shi-Min, A new watermarking method for 3D models based on integral invariants. IEEE Trans. Vis. Comput. Graph. 15(2), 285–294 (2009)CrossRefGoogle Scholar
  45. 45.
    Y. Yang, R. Pintus, H. Rushmeier, I. Ivrissimtzis, A 3D steganalytic algorithm and steganalysis-resistant watermarking. IEEE Trans. Vis. Comput. Graph. 23(2), 1002–1013 (2017)CrossRefGoogle Scholar
  46. 46.
    Y Yang, R. Pintus, H. Rushmeier, I. Ivrissimtzis, A steganalytic algorithm for 3D polygonal meshes, in IEEE International Conference on Image Processing (ICIP), Paris, France, Oct 2014, pp. 4782–4786Google Scholar
  47. 47.
    J.-W. Cho, R. Prost, H.-Y. Jung, An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms. IEEE Trans. Signal Process. 55(1), 142–155 (2007)MathSciNetCrossRefGoogle Scholar
  48. 48.
    A. Al-Haj, M.E. Farfoura, A. Mohammad, Transform-based watermarking of 3D depth-image-based-rendering images. Measurement 95, 405–417 (2017)CrossRefGoogle Scholar
  49. 49.
    Y.H. Lin, J.L. Wu, A digital blind watermarking for depth-image based rendering 3D images. IEEE Trans. Broadcasting 57(2), 602–611 (2011)CrossRefGoogle Scholar
  50. 50.
    H.D. Kim, J.W. Lee, T.W. Oh, H.K. Lee, Robust DT-CWT Watermarking for DIBR 3D Images. IEEE Trans. Broadcasting 58(4), 533–543 (2012)CrossRefGoogle Scholar
  51. 51.
    A. Kejariwal, S. Gupta, A. Nicolau, N.D. Dutt, R. Gupta, Energy efficient watermarking on mobile devices using proxy-based partitioning. IEEE Trans. VLSI Syst. 14(6), 625–636 (2006)CrossRefGoogle Scholar
  52. 52.
    S.G. Shini, T. Tony, K. Chithraranja, Cloud based medical image exchange-security challenges. Process. Eng. 38, 3454–3461 (2012)Google Scholar
  53. 53.
    X. Cao, F. Zhangjie, X. Sun, A privacy-preserving outsourcing data storage scheme with fragile digital watermarking-based data auditing. J. Elect. Computer Eng. 2016, 1–7 (2016)Google Scholar
  54. 54.
    C.-T. Yang, C.-H. Lin, G.-L. Chang, Implementation of image watermarking processes on cloud computing environments, security-enriched urban computing and smart grid. Ser. Commun. Computer Inf. Sci. 223, 131–140 (2011)Google Scholar
  55. 55.
    M. Vatsa, R. Singh, A. Noore, Feature based RDWT watermarking for multimodal biometric system. Image Vis. Comput. 27(3), 293–304 (2009)CrossRefGoogle Scholar
  56. 56.
    A.K. Jain, U. Uludag, Hiding biometric data. IEEE Trans. Pattern Anal. Mach. Intell. 25(11), 1494–1498 (2003)CrossRefGoogle Scholar
  57. 57.
    WIOLETTA, Biometric watermarking for medical images–example of IRIS code. Tech. Trans., 409–416 (2013)Google Scholar
  58. 58.
    D. Bhowmik, C. Abhayaratne, Quality scalability aware watermarking for visual content. IEEE Trans. Image Process. 25(11), 5158–5172 (2016)MathSciNetCrossRefGoogle Scholar
  59. 59.
    F. Huo, X. Gao, A wavelet based image watermarking scheme, in Proceedings 2006 IEEE International Conference on Image Processing, Atlanta, Georgia, USA, 2006, pp. 2573–2576Google Scholar
  60. 60.
    A.V. Subramanyam, S. Emmanuel, Partially compressed-encrypted domain robust JPEG image watermarking. Multimedia Tools Appl. 71(3), 1311–1331 (2014)CrossRefGoogle Scholar
  61. 61.
    H.-T. Hu, L.-Y. Hsu, Exploring DWT–SVD–DCT feature parameters for robust multiple watermarking against JPEG and JPEG2000 compression. Comput. Electr. Eng. 41, 52–63 (2015)CrossRefGoogle Scholar
  62. 62.
    N. Cai, N. Zhu, S. Weng, B.W.-K. Ling, Difference angle quantization index modulation scheme for image watermarking. Signal Process. Image Commun. 34, 52–60 (2015)CrossRefGoogle Scholar
  63. 63.
    L. Xie, G.R. Arce, Joint wavelet compression and authentication watermarking. Proc. Int. Conf. Image Process. 2, 427–431 (1998)Google Scholar
  64. 64.
    P. Meerwald, Quantization watermarking in the JPEG2000 coding pipeline, in Communications and Multimedia Security Issues of the New Century, vol. 64 of the series IFIP, The International Federation for Information Processing, 2001, pp. 69–79Google Scholar
  65. 65.
    J.M. Guo, G.-H. Lai, K. Wong, C.C. Li, Progressive Halftone watermarking using multilayer table lookup strategy. IEEE Trans. Image Process. 24(7), 2009–2024 (2015)MathSciNetCrossRefGoogle Scholar
  66. 66.
    C.C.S. JM Guo, Y.F. Liu, H. Lee, J.D. Lee, Oriented modulation for watermarking in direct binary search halftone images. IEEE Trans. Image Process. 21(9), 4117–4127 (2012)MathSciNetCrossRefGoogle Scholar
  67. 67.
    S.C. Pei, J.M. Guo, H. Lee, Novel robust watermarking technique in dithering halftone images. IEEE Signal Process. Lett. 12(4), 333–336 (2005)CrossRefGoogle Scholar
  68. 68.
    J.M. Guo, Y.F. Liu, Hiding multitone watermarks in halftone images. IEEE Multimedia 17(1), 34–43 (2010)CrossRefGoogle Scholar
  69. 69.
    J.M. Guo, Y.F. Liu, Halftone-image security improving using overall minimal-error searching. IEEE Trans. Image Process. 20(10), 2800–2812 (2011)MathSciNetCrossRefGoogle Scholar
  70. 70.
    S. Heidari, M. Naseri, A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 4205–4218 (2016)CrossRefzbMATHGoogle Scholar
  71. 71.
    N. Jiang, N. Zhao, L. Wang, LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amit Kumar Singh
    • 1
    Email author
  • Basant Kumar
    • 2
  • Ghanshyam Singh
    • 3
  • Anand Mohan
    • 4
  1. 1.Department of Computer Science & EngineeringJaypee University of Information TechnologyWaknaghat, SolanIndia
  2. 2.Department of Electronics and Communication EngineeringMotilal Nehru National Institute of TechnologyAllahabadIndia
  3. 3.Department of Electronics and Communication EngineeringJaypee University of Information TechnologyWaknaghat, SolanIndia
  4. 4.Department of Electronics EngineeringIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations