Skip to main content

Power Allocation with Energy Harvesting Over Fading Channel Under Statistical Delay Constraints

  • Chapter
  • First Online:
Radio Resource Allocation Over Fading Channels Under Statistical Delay Constraints

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 296 Accesses

Abstract

Next-generation wireless systems are expected to support an ever increasing number of wireless connections with better quality-of-service (QoS), e.g., higher data rate and smaller delay [1, 2]. As a result, energy consumption, as well as energy cost, and greenhouse gas emission are increased, which pose challenges in the design of wireless systems. One promising method to tackle this issue is energy harvesting (EH), where wireless nodes have the capability to harvest energy from the renewable sources (e.g., solar, and thermoelectric, etc.) of the surrounding environment, and store the harvested energy in batteries to carry out their functions. In this chapter, we explore power allocation problems for such EH systems to support delay-sensitive communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless Networks: A Comprehensive Survey,” Commun. Surveys Tuts., vol. 18, no. 3, pp. 1617–1655, Feb. 2016.

    Google Scholar 

  2. J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and J. Zhang, “What Will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, June 2014.

    Google Scholar 

  3. N. Salodkar, A. Bhorkar, A. Karandikar, and V. S. Borkar, “On-Line Learning Algorithm for Energy Efficient Delay Constrained Scheduling over Fading Channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 4, pp. 732–742, May 2008.

    Google Scholar 

  4. F. Fu, and M. van der Schaar, “Structure-Aware Stochastic Control for Transmission Scheduling,” IEEE Trans. Veh. Tech., vol. 61, no. 9, pp. 3931–3945, Nov. 2012.

    Google Scholar 

  5. M. Jayalakshmi, and K. Balasubramanian, “Simple Capacitors to Supercapacitors - An Overview,” Int. J. Electrochem. Sci., vol. 3, no. 11, pp. 1196–1217, Oct. 2008.

    Google Scholar 

  6. C. K. Ho, and R. Zhang, “Optimal Energy Allocation for Wireless Communications with Energy Harvesting Constraints,” IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4808–4818, Sept. 2012.

    Google Scholar 

  7. P. Blasco, D. Gunduz, and M. Dohler, “A Learning Theoretic Approach to Energy Harvesting Communication System Optimization,” IEEE Trans. Wireless Commun., vol. 12, no. 4, pp. 1872–1882, Apr. 2013.

    Google Scholar 

  8. L. Huang, and M. Neely, “Utility Optimal Scheduling in Energy-harvesting Networks,” IEEE/ACM Trans. Net., vol. 21, no. 4, pp. 1117–1130, Aug. 2013.

    Google Scholar 

  9. O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732–1743, Sept. 2011.

    Google Scholar 

  10. E. Altman, Constrained Markov Decision Processes: Stochastic Modeling. London, UK.: Chapman & Hall CRC, 1999.

    Google Scholar 

  11. S. Boyd, and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

    Google Scholar 

  12. D. P. Bertsekas. Dynamic Programming and Optimal Control Vol. 1. Belmont, MA: Athens Scientific, 1995.

    Google Scholar 

  13. R. Amir, “Supermodularity and Complementarity in Economics: An Elementary Survey,” Southern Economic Journal, vol. 71, no. 3, pp. 636–660, 2005.

    Article  Google Scholar 

  14. N. Zlatanov, Z. Hadzi-Velkov, and R. Schober, “Asymptotically Optimal Power Allocation for Point-to-Point Energy Harvesting Communication Systems,” in Proc. 2013 IEEE GLOBECOM, Atlanta, GA, USA.

    Google Scholar 

  15. D. Wu, and R. Negi, “Effective Capacity: A Wireless Link Model for Support of Quality of Service,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 630–643, Jul. 2003.

    Google Scholar 

  16. J. Tang and X. Zhang, “QoS-driven Power and Rate Adaptation over Wireless Links,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 3058–3068, Aug. 2007.

    Google Scholar 

  17. M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Control of Wireless Networks with Rechargeable Batteries,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 581–593, Feb. 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Le-Ngoc, T., Phan, K.T. (2017). Power Allocation with Energy Harvesting Over Fading Channel Under Statistical Delay Constraints. In: Radio Resource Allocation Over Fading Channels Under Statistical Delay Constraints. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57693-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57693-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57692-3

  • Online ISBN: 978-3-319-57693-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics