Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 303 Accesses

Abstract

The past decade has seen the tremendous growth of wireless communications with the increasing demand for various emerging applications such as video transmissions, mobile entertainment, mobile healthcare etc., which require higher data rate and/or more stringent delay quality-of-service (QoS). Consequently, in the development of next-generation wireless systems, it is a crucial task to provide wireless connections with better QoS such as higher data rate, smaller delay etc. [1, 2]. However, such task is not easy due to many inherent challenges. One challenge is the fact that wireless signal strength randomly fluctuates over time due to varying fading [3]. There are large-scale fading effects, where the received signal strength changes over distance because of the path loss and shadowing, and small-scale fading effects, where the received signal strength changes because of the constructive and destructive interference of multiple reflecting and refracting signal paths. In addition, the available radio resources are limited. Hence, efficient (radio) resource allocation is crucial to combat the fading effects of wireless channels, and providing satisfactory QoS to the users [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless Networks: A Comprehensive Survey,” Commun. Surveys Tuts., vol. 18, no. 3, pp. 1617–1655, Feb. 2016.

    Google Scholar 

  2. J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and J. Zhang, “What Will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, June 2014.

    Google Scholar 

  3. A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

    Google Scholar 

  4. Z. Han, An Optimization Theoretical Framework for Resource Allocation over Wireless Networks. PhD thesis, University of Maryland, USA, 2003.

    Google Scholar 

  5. M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar, “Providing Quality of Service over a Shared Wireless Link,” IEEE Commun. Mag., vol. 39, no. 2, pp. 150–154, Feb. 2001.

    Google Scholar 

  6. J. Chen, Resource Allocation for Delay Constrained Wireless Communications. PhD thesis, University College London, UK, 2010.

    Google Scholar 

  7. X. Zhang, W. Cheng, and H. Zhang, “Heterogeneous Statistical QoS Provisioning Over 5G Mobile Wireless Networks,” IEEE Network Magazine, vol. 28, no. 6, pp. 46–53, Nov./Dec. 2014.

    Google Scholar 

  8. 3rd Generation Partnership Project, Universal Mobile Telecommunications System (UMTS); Quality of Service Concept and Architecture. (3GPP TS 23.107 version 5.4.0 Release 5).

    Google Scholar 

  9. B. Collins, and R. Cruz, “Transmission Policies for Time Varying Channels with Average Delay Constraints,” in Proc. 1999 Allerton Conf. on Commun., Control, and Computing, Urbana, IL, USA.

    Google Scholar 

  10. X. Zhang, J. Tang, H.-H. Chen, S. Ci, and M. Guizani, “Cross-layer-based Modeling for Quality of Service Guarantees in Mobile Wireless Networks,” IEEE Commun. Mag., vol. 44, no. 1, pp. 100–106, Jan. 2006.

    Google Scholar 

  11. S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and J. H. Lang, “Vibration-to-Electric Energy Conversion,” IEEE Trans. on VLSI, vol. 9, no. 1, pp. 64–76, Feb. 2001.

    Google Scholar 

  12. V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivastava, “Design Considerations for Solar Energy Harvesting Wireless Embedded Systems,” in Proc. 2005 IEEE IPSN, Los Angeles, CA, USA.

    Google Scholar 

  13. S. Chalasani, and J. M. Conrad, “A Survey of Energy Harvesting Sources for Embedded Systems,” in Proc. 2008 IEEE Southeastcon, Huntsville, AL, USA.

    Google Scholar 

  14. M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and G. Zussman, “Challenge: Ultra-low-power Energy-harvesting Active Networked Tags (EnHANTs), ” in Proc. 2009 ACM Mobicom, Beijing, China.

    Google Scholar 

  15. H. Li, C. Huang, F. Alsaadi, A. M. Dobaie, and S. Cui, “Energy Harvesting based Green Heterogeneous Wireless Access for 5G,” in 5G Mobile Communications, Ed., Springer, 2016, pp. 475–502.

    Google Scholar 

  16. D. Mishra, and S. De, “Energy Harvesting and Sustainable M2M Communication in 5G Mobile Technologies,” in Internet of Things (IoT) in 5G Mobile Technologies, Ed., Springer, 2016, pp 99–125.

    Google Scholar 

  17. H. Shafieirad, R. S. Adve, and S. ShahbazPanahi, “Large Scale Energy Harvesting Sensor Networks with Applications in Smart Cities,” in Smart City 360, Ed., Springer, 2016, pp. 215–226.

    Google Scholar 

  18. T. R. Halford, and K. M. Chugg, “Barrage Relay Networks,” in Proc. 2010 IEEE ITA, San Diego, CA, USA.

    Google Scholar 

  19. D. Gunduz, K. Stamatiou, N. Michelusi, and M. Zorzi, “Designing Intelligent Energy Harvesting Communication Systems,” IEEE Commun. Mag., vol. 52, no. 1, pp. 210–216, Jan. 2014.

    Google Scholar 

  20. I. Ahmeda, M. M. Butta, C. Psomasb, A. Mohamed, I. Krikidisb, and M. Guizania, “Survey on Energy Harvesting Wireless Communications: Challenges and Opportunities for Radio Resource Allocation,” Computer Networks, vol. 88, no. 9, pp. 234–248, Sept. 2015.

    Google Scholar 

  21. S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and K. Huang. “Energy Harvesting Wireless Communications: A Review of Recent Advances,” IEEE J. Sel. Areas Commun., vol. 33, no. 5, pp. 360–381, Mar. 2015.

    Google Scholar 

  22. Y. Cui, V. Lau, R. Wang, and H. Huang, “A Survey on Delay-aware Resource Control for Wireless Systems - Large Derivation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning,” IEEE Trans. Infor. Theory, vol. 58, no. 3, pp. 1677–1701, March 2012.

    Google Scholar 

  23. R. Berry, and R. Gallager, “Communication over Fading Channels with Delay Constraints,” IEEE Trans. Infor. Theory, vol. 48, no. 5, pp. 1135–1149, May 2002.

    Google Scholar 

  24. D. S. W. Hui, V. K. N. Lau, and H. L. Wong, “Cross-layer Design for OFDMA Wireless Systems with Heterogeneous Delay Requirements,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2872–2880, Aug. 2007.

    Google Scholar 

  25. M. J. Neely, “Energy Optimal Control for Time Varying Wireless Networks,” IEEE Trans. Infor. Theory, vol. 52, no. 7, pp. 2915–2934, July 2006.

    Google Scholar 

  26. N. Salodkar, A. Bhorkar, A. Karandikar, and V. S. Borkar, “On-Line Learning Algorithm for Energy Efficient Delay Constrained Scheduling over Fading Channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 4, pp. 732–742, May 2008.

    Google Scholar 

  27. F. Fu, and M. van der Schaar, “Structure-Aware Stochastic Control for Transmission Scheduling,” IEEE Trans. Veh. Tech., vol. 61, no. 9, pp. 3931–3945, Nov. 2012.

    Google Scholar 

  28. A. Abdrabou and W. Zhuang, “Stochastic Delay Guarantees and Statistical Call Admission Control for IEEE 802.11 Single-hop Ad hoc Networks,” IEEE Trans. Wireless Commun., vol. 7, no. 10, pp. 3972–3981, Oct. 2008.

    Google Scholar 

  29. M. Zafer, and E. Modiano, “Minimum Energy Transmission over a Wireless Channel with Deadline and Power Constraints,” IEEE Trans. Auto. Control, vol. 54, no. 12, pp. 2841–2852, Dec. 2009.

    Google Scholar 

  30. W. Chen, M. J. Neely, and U. Mitra, “Energy-efficient Transmissions with Individual Packet Delay Constraints,” IEEE Trans. Inf. Theory, vol. 54, no. 5, pp. 2090–2109, May 2008.

    Google Scholar 

  31. V. Hanly, and D. Tse, “Multiaccess Fading Channels. Part II: Delay-limited Capacities,”IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 2816–2831, Nov. 1998.

    Google Scholar 

  32. C.-S Chang, “Stability, Queue Length, and Delay of Deterministic and Stochastic Queuing Networks,” IEEE Trans. Auto. Control, vol. 39, no. 5, pp. 913–931, May 1994.

    Google Scholar 

  33. D. Wu, and R. Negi, “Effective Capacity: A Wireless Link Model for Support of Quality of Service,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 630–643, Jul. 2003.

    Google Scholar 

  34. D. Wu, Providing Quality-of-Service Guarantees in Wireless Networks. PhD thesis, Carnegie Mellon University, USA, 2003.

    Google Scholar 

  35. X. Zhang, and Q. Du, “Cross-Layer Modeling for QoS-Driven Multimedia Multicast/Broadcast Over Fading Channels in Mobile Wireless Networks,” IEEE Commun. Mag., vol. 45, no. 8, pp. 62–70, Aug. 2007.

    Google Scholar 

  36. E. Altman, Constrained Markov Decision Processes: Stochastic Modeling. London, UK.: Chapman & Hall CRC, 1999.

    Google Scholar 

  37. P. Blasco, D. Gunduz, and M. Dohler, “A Learning Theoretic Approach to Energy Harvesting Communication System Optimization,” IEEE Trans. Wireless Commun., vol. 12, no. 4, pp. 1872–1882, Apr. 2013.

    Google Scholar 

  38. O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732–1743, Sept. 2011.

    Google Scholar 

  39. C. K. Ho, and R. Zhang, “Optimal Energy Allocation for Wireless Communications with Energy Harvesting Constraints,” IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4808–4818, Sept. 2012.

    Google Scholar 

  40. D. P. Bertsekas. Dynamic Programming and Optimal Control Vol. 1. Belmont, MA: Athens Scientific, 1995.

    Google Scholar 

  41. R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction. The MIT Press, 1998.

    Google Scholar 

  42. V. S. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, 2008.

    Google Scholar 

  43. B. Xia, Y. Fan, J. Thompson, and H. V. Poor, “Buffering in a Three-node Relay Network,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4492–4496, Nov. 2008.

    Google Scholar 

  44. I. Krikidis, T. Charalambous, and J. Thompson, “Buffer-aided Relay Selection for Cooperative Diversity Systems without Delay Constraints,” IEEE Trans. Wireless Commun., vol. 11, no. 5, pp. 1957–1967, 2012.

    Article  Google Scholar 

  45. N. Zlatanov, A. Ikhlef, T. Islam, and R. Schober, “Buffer-aided Cooperative Communications: Opportunities and Challenges,” IEEE Commun. Magazine, vol. 52, no. 4, pp. 146–153, April 2014.

    Google Scholar 

  46. N. Zlatanov, R. Schober, and P. Popovski, “Buffer-aided Relaying with Adaptive Link Selection,” IEEE J. Sel. Areas Commun., vol. 31, no. 8, pp. 1530–1542, Aug. 2013.

    Google Scholar 

  47. N. Zlatanov, and R. Schober, “Buffer-aided Relaying With Adaptive Link Selection - Fixed and Mixed Rate Transmission,” IEEE Trans. on Inform. Theory, vol. 59, no. 5, pp. 2816–2840, Jan. 2013.

    Google Scholar 

  48. M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, Real-time, Full-Duplexing Wireless,” in Proc. 2011 ACM Mobicom, Las Vegas, NV, USA.

    Google Scholar 

  49. M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven Characterization of Full-duplex Wireless Systems,” IEEE Trans. Wireless Commun., vol. 11, no. 12, pp. 4296–4307, Dec. 2012.

    Google Scholar 

  50. D. Bharadia, E. McMilin, and S. Katti, “Full-Duplex Radios,” in SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 375–386, Aug. 2013.

    Google Scholar 

  51. T. Riihonen, S. Werner, and R. Wichman, “Comparison of Full-duplex and Half-duplex Modes with a Fixed Amplify-and-Forward Relay,” in Proc. 2009 IEEE WCNC, Budapest, Hungary.

    Google Scholar 

  52. T. Riihonen, S. Werner, and R. Wichman, “Hybrid Full-duplex/Half-duplex Relaying with Transmit Power Adaptation,” IEEE Trans. Wireless Commun., vol. 10, no. 9, pp. 3074–3085, Sept. 2011.

    Google Scholar 

  53. H. Q. Ngo, H. A. Suraweera, M. Matthaiou, and E. G. Larsson, “Multipair Full-duplex Relaying with Massive Arrays and Linear Processing,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1721–1737, June 2014.

    Google Scholar 

  54. L. J. Rodriguez, N. H. Tran, and T. Le-Ngoc, “Optimal Power Allocation and Capacity of Full-Duplex AF Relaying under Residual Self-Interference,” IEEE Wireless Commun. Letters, vol. 3, no. 2, pp. 233–236, Apr. 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Le-Ngoc, T., Phan, K.T. (2017). Introduction. In: Radio Resource Allocation Over Fading Channels Under Statistical Delay Constraints. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57693-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57693-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57692-3

  • Online ISBN: 978-3-319-57693-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics