Skip to main content

Kinetic Modeling of SOA Formation for \(\alpha \)- and \(\beta \)-Pinene

  • Conference paper
  • First Online:
Air Pollution Modeling and its Application XXV (ITM 2016)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

  • 1568 Accesses

Abstract

In the last years, two major findings concerning secondary organic aerosol (SOA) were reported. Firstly, the aerosol particles formed by the organic compounds are higher viscous than previously thought. Up to now, SOA formation modeling has mostly based on gas-particle equilibrium partitioning of semi-volatile species. This approach implicates sufficient diffusion of the organic compounds into the particle phase to keep the condensed phase in equilibrium with the gas phase, thus the phase state of the particle phase is important for SOA modeling. Secondly, highly oxidized multifunctional organic compounds (HOMs) are found to influence the early aerosol growth. In order to investigate both aerosol phase state and HOMs in detail in the SPACCIM model framework, a kinetic partitioning approach was implemented in the box model and the gas-phase chemistry mechanism was updated by HOMs. Finally, the insights of the performed box model studies have been utilized to improve SOA modeling within a 3D model and first results are shown in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berndt T, Richters S, Jokinen T, Hyttinen N, Kurtén T, Otkjær RV, Kjaergaard HG, Stratmann F, Herrmann H, Sipilä M, Kulmala M, Ehn M (2016) Hydroxyl radical-induced formation of highly oxidized organic compounds. Nat Commun (in press)

    Google Scholar 

  • Chen J, Griffin RJ (2005) Modeling secondary organic aerosol formation from oxidation of \(\alpha \)-pinene, \(\beta \)-pinene, and d-limonene. Atmos Environ 39(40):7731–7744. doi:10.1016/j.atmosenv.2005.05.049

    Article  CAS  Google Scholar 

  • Compernolle S, Ceulemans K, Müller JF (2011) Evaporation: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions. Atmos Chem Phys 11(18):9431–9450. doi:10.5194/acp-11-9431-2011

    Article  CAS  Google Scholar 

  • DeCarlo PF, Kimmel JR, Trimborn A, Northway MJ, Jayne JT, Aiken AC, Gonin M, Fuhrer K, Horvath T, Docherty KS, Worsnop DR, Jimenez JL (2006) Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal Chem 78(24):8281–8289. doi:10.1021/ac061249n

    Article  CAS  Google Scholar 

  • Gatzsche K, Iinuma Y, Tilgner A, Mutzel A, Berndt T, Wolke R (2017) Modeling studies of SOA formation from -pinene ozonolysis. Atmos Chem Phys Discuss 1–33. doi:10.5194/acp-2017-275

  • Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel TF, Monod A, Prévôt ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9(14):5155–5236. doi:10.5194/acp-9-5155-2009

  • Jokinen T, Berndt T, Makkonen R, Kerminen VM, Junninen H, Paasonen P, Stratmann F, Herrmann H, Guenther AB, Worsnop DR, Kulmala M, Ehn M, Sipilä M (2015) Production of extremely low volatile organic compounds from biogenic emissions: measured yields and atmospheric implications. Proc Natl Acad Sci 112(23):7123–7128. doi:10.1073/pnas.1423977112

    Article  CAS  Google Scholar 

  • Karl M, Dorn HP, Holland F, Koppmann R, Poppe D, Rupp L, Schaub A, Wahner A (2006) Product study of the reaction of oh radicals with isoprene in the atmosphere simulation chamber saphir. J Atmos Chem 55(2):167–187. doi:10.1007/s10874-006-9034-x

    Article  CAS  Google Scholar 

  • Li YP, Elbern H, Lu KD, Friese E, Kiendler-Scharr A, Mentel TF, Wang XS, Wahner A, Zhang YH (2013) Updated aerosol module and its application to simulate secondary organic aerosols during impact campaign May 2008. Atmos Chem Phys 13(13):6289–6304. doi:10.5194/acp-13-6289-2013

    Article  Google Scholar 

  • Mutzel A, Poulain L, Berndt T, Iinuma Y, Rodigast M, Böge O, Richters S, Spindler G, Sipilä M, Jokinen T, Kulmala M, Herrmann H (2015) Highly oxidized multifunctional organic compounds observed in tropospheric particles: a field and laboratory study. Environ Sci Technol 49(13):7754–7761. doi:10.1021/acs.est.5b00885

    Article  CAS  Google Scholar 

  • Richters S, Herrmann H, Berndt T (2016) Highly oxidized RO\(_2\) radicals and consecutive products from the ozonolysis of three sesquiterpenes. Environ Sci Technol 50(5):2354–2362. doi:10.1021/acs.est.5b05321

    Article  CAS  Google Scholar 

  • Schättler U, Doms G, Schraff C (2013) A description of the nonhydrostatic regional cosmo-model. Part vii: user’s guide. Deutscher Wetterdienst, Offenbach. http://www.cosmo-model.org

  • Schell B, Ackermann IJ, Hass H, Binkowski FS, Ebel A (2001) Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J Geophys Res Atmos 106(D22):28,275–28,293. doi:10.1029/2001JD000384

  • Steinbrecher R, Smiatek G, Koeble R, Seufert G, Theloke J, Hauff K, Ciccioli P, Vautard R, Curci G (2009) Intra- and inter-annual variability of VOC emissions from natural and semi-natural vegetation in Europe and neighbouring countries. Atmos Environ 43(7):1380–1391. doi:10.1016/j.atmosenv.2008.09.072

    Article  CAS  Google Scholar 

  • Stockwell WR, Kirchner F, Kuhn M, Seefeld S (1997) A new mechanism for regional atmospheric chemistry modeling. J Geophys Res Atmos 102(D22):25,847–25,879. doi:10.1029/97JD00849

  • Volkamer R, Jimenez JL, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina LT, Worsnop DR, Molina MJ (2006) Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophys Res Lett 33(17):1944–8007. doi:10.1029/2006gl026899

    Article  Google Scholar 

  • Wolke R, Sehili A, Simmel M, Knoth O, Tilgner A, Herrmann H (2005) SPACCIM: a parcel model with detailed microphysics and complex multiphase chemistry. Atmos Environ 39(23–24):4375–4388. doi:10.1016/j.atmosenv.2005.02.038

    Article  CAS  Google Scholar 

  • Wolke R, Schröder W, Schrödner R, Renner E (2012) Influence of grid resolution and meteorological forcing on simulated european air quality: a sensitivity study with the modeling system COSMO-MUSCAT. Atmos Environ 53:110–130. doi:10.1016/j.atmosenv.2012.02.085

    Article  CAS  Google Scholar 

  • Zaveri RA, Easter RC, Shilling JE, Seinfeld JH (2014) Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction. Atmos Chem Phys 14(10):5153–5181. doi:10.5194/acp-14-5153-2014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gatzsche .

Editor information

Editors and Affiliations

Question and Answer

Question and Answer

Questioner: Peter Viaene.

Question: Have you considered changes in reaction surface which would affect the kinetics by introducing a \(k_{\text {c}}(r_{\text {p}})\)?

Answer: The reactivity of the surface can be influenced by the partitioning of organic compounds. However, we did not consider changes of \(k_{\text {c}}\) in our simulations. Since, no measurement values of \(k_{\text {c}}\) are available to us, we initially have to estimate this parameter from simulations. We will consider the idea for further investigations.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Gatzsche, K. et al. (2018). Kinetic Modeling of SOA Formation for \(\alpha \)- and \(\beta \)-Pinene. In: Mensink, C., Kallos, G. (eds) Air Pollution Modeling and its Application XXV. ITM 2016. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-57645-9_87

Download citation

Publish with us

Policies and ethics